[nim

DEPARTMENT OF INFORMATICS

TECHNICAL UNIVERSITY OF MUNICH

Bachelor’s Thesis in Information Systems

Empirical Studies to Identify Coordination-
and Methodology Patterns in Large-Scale
Agile Development

Moritz Schiill

0

DEPARTMENT OF INFORMATICS

TECHNICAL UNIVERSITY OF MUNICH

Bachelor’s Thesis in Information Systems

Empirical Studies to Identify Coordination- and
Methodology Patterns in Large-Scale Agile
Development

Empirische Studien zur Identifikation von
Koordinations- und Methodenmustern bei der skalierten
agilen Entwicklung

Author: Moritz Schiill
Supervisor: Prof. Dr. Florian Matthes
Advisor: Omer Uludag, M. Sc.

Submission Date: August 15, 2019

D

I confirm that this bachelor’s thesis is my own work and I have documented all sources
and material used.

Munich, August 15, 2019 Moritz Schiill

Abstract

Agile software development methodologies have been designed for use in small teams.
The objective of agile methods is to increase the flexibility of the development teams, to
adapt to changing requirements by closely working together with the customer, and to
produce products that actually satisfy the user in the end. During the past years, due
to the shown benefits of agile methodologies, larger companies have been increasingly
interested in applying them in their software development projects as well. Using ag-
ile methodologies in large-scale agile software development projects with multiple teams,
however, creates additional concerns for companies, because those methodologies have
not been designed with multiple teams and locations in mind. Concerns such as not work-
ing co-located, increased need for communication, and dependencies between the differ-
ent teams are not addressed by standard agile methodologies. New good practices are
required to apply agile methods successfully at scale.

So far, this area of concerns and new practices for large-scale agile software develop-
ment is not broadly covered in research. Therefore, the Chair of Software Engineering for
Business Information Systems (sebis chair) at the Technical University of Munich has de-
veloped a Large-Scale Agile Development Pattern Language. This pattern language will
contain concerns of various stakeholders and patterns that address those concerns. This
thesis will contribute to filling this pattern language with concerns and pattern candidates
observed in practice, by conducting an empirical study at a large German software vendor.
The thesis looks at various stakeholders of the large-scale agile development program and
seeks to identify their recurring concerns in coordination and application of agile methods
at large scale. Further, good practices that are employed by the stakeholders to overcome
their concerns are collected and documented in a formalized way, according to the pattern
language. This thesis is part of a larger research project. The collected concerns and good
practices, together with the likes being collected at other projects, contribute to this larger
project. Its goal is to create a collection of patterns that is designed to help practitioners to
successfully apply agile methodologies at large-scale projects.

vii

viii

Contents

[Abstract

Outh Fthe Thesis

[1._Introduction|
1.1. vation] e
[1.2. Research Objectives|.

[[.3. Approach|.

2.1.1. Definitions|.
[2.1.2. Wrnting Patterns| 0000
.2. Agile Software Development|

221 Definitionsand Values
[2.2.2. Distinction from other Methodologies|

2237 Scruml

3. _Related Workl
B.1. Related Work on Large-Scale Agile Development|.
2. Rel rk on rdination| L Lo
3.3. Related Work on Pattern Languages|

(4. Identifying Recurring Concerns and Practices|

I Methodology
4.2. Case Descrlptloﬂ

4.3. Findings on Recurring Concerns|
4.4. Findings on Good and Bad Practices|

vii

xi

NN - =

ix

Contents

4.43. Sprint Zero|
4.4.5. Representative Exchange|,
447 TeamHomepage|
449. Demo Driven Development|
4.5. Coordination Mode Analysis of Identified Practices|

5D ol

[A. Appendix

[A.1. Interview Questionnaire on Identifying Concerns and Good Practices|. . . .

B. Appendix

[C. Appendix
[C.1._Documentation of Good Coordination Practices]

C.2. Documentation of Good Methodology Practices|
C.3. Documentation of Good Viewpoint Practices|

C 4. Documentation of Bad Practices|. o v v v v

[C.5. Documentation of Principle Candidates|

Bibliography

79
79
91

93
93
121
134
147
152

155

Outline of the Thesis

CHAPTER 1: INTRODUCTION

The first chapter presents the motivation of the thesis. It explains why research about
applying agile methodologies in large-scale projects is worth pursuing and how the objec-
tives of this thesis are connected to the current state of research and practice. The end of
the chapter outlines the approach chosen to accomplish the objectives.

CHAPTER 2: FOUNDATIONS

The Foundations define important terms and present the context in which this thesis is
placed. The chapter summarizes existing research by the sebis chair that this thesis builds
on. Also, the theoretical foundations of agile methods, pattern-based solution approaches,
and coordination theory are presented.

CHAPTER 3: RELATED WORK

The third chapter compares several pattern languages in the agile and large-scale context.
Further, it discusses related work on coordination in large-scale agile software develop-
ment.

CHAPTER 4: IDENTIFYING RECURRING CONCERNS AND PRACTICES

This chapter presents the empirical study that is conducted in the thesis. First, the scien-
tific methodology of the empirical study is explained. Then, the concerns and practices
that are found throughout the course of the study are discussed.

CHAPTER 5: DISCUSSION

The Discussion outlines the key findings of the thesis and reviews the research quality of
the presented study. Limitations of the work are discussed.

CHAPTER 6: CONCLUSION

The final chapter summarizes the work and presents an outlook to potential future work.

1. Introduction

1.1. Motivation

For a long time, methodologies like the Waterfall Model and the Spiral Model have been
largely used for software development [12, 58|]. These traditional software development
methodologies, however, fail to adapt to changes in requirements and project scope during
development; they rely on comprehensive upfront planning and do not include frequent
interaction with the project customers. This approach to structure the software develop-
ment as a defined process leads to inability to react promptly to unexpected events during
the development [65].

Form the 1990s until the early 2000s, several lightweight software development method-
ologies have emerged that make software development more adaptive to changing re-
quirements and reduce time-to-market. In 1995, Scrum was presented by Ken Schwaber
and Jeff Sutherland at the Object-Oriented Programming, Systems, Languages & Appli-
cations (OOPSLA) conference [65], and in 1999 Kent Beck published Extreme Program-
ming (XP) [4]. In 2001, the Agile Manifesto assembled the values of these and other
methodologies known under the term “Agile Methodologies” [5]. Agile methodologies
approach software development as an empirical process [65]. They focus on adaption
to change, learning about the project and customer needs during development, iterative
work, and incremental product building [29]. They are designed for small development
teams that work co-located and do small, frequent releases [13]].

By today, agile methodologies have become very popular in the software development
world, with Scrum and XP being among the most commonly used [40]. Due to their shown
benefits, agile methodologies have become increasingly interesting for larger companies
[23]. However, agile methodologies are difficult to introduce in larger projects. Applying
agile in large projects brings new concerns that are not addressed by the normal agile prac-
tices, like inter-team coordination, dealing with organizational structures, and additional
stakeholders [23].

At the International Conference on Agile Software Development (XP Conference) in 2010,
practitioners voted “agile and large projects” to be their most pressing question they want
research to be conducted on [33]. To fill this gap between research topics and practi-
tioners” demands, the Chair of Software Engineering for Business Information Systems
(sebis chair) of the Technical University of Munich created a Large-Scale Agile Develop-
ment Pattern Language (LSADPL), which will collect and formalize concerns and good
practices to address them found in the industry [74].

At the XP Conference in 2013, participants were asked to state what they see as the most

1. Introduction

important research topics in large-scale agile software development [25]. They ranked
“inter-team coordination” as a top priority research topic [25]. This thesis tries to address
this research topic by conducting an empirical study at a large German software vendor,
focusing on concerns and practices in

e coordination of work and
* applying the methodology

in large-scale agile software development. The concerns and practices identified in the
study will be structured according to the LSADPL of the sebis chair.

1.2. Research Objectives

Following the mentioned research motivation, this bachelor’s thesis seeks to contribute to
the areas of coordination and methodology in large-scale agile development. To meet this
objective, we formulate three research questions (RQs) and answer them in this work.
RQ1. What are recurring coordination and methodology concerns in large-scale agile
development? The objective of the first research question is to identify concerns of the cat-
egories coordination and methodology. The goal is to find concerns in the literature and
from practice. Concerns are collected and validated at the industry partner’s organization.
To identify recurring concerns, the aim is to collect multiple opinions on each concern.
RQ2. What are good practices for addressing recurring coordination and methodology
concerns in large-scale agile development?

The goal of the second research question is to identify good practices that are used at the
case company to address and solve concerns. This research question is building on the
concerns that are identified in research question 1.

RQ3. Which anti-patterns regarding coordination and methodologies should be avoided
in large-scale agile development?

In contrast to the second research question, the third one focuses on bad practices that the
case organization tried to employ in order to solve the identified concerns and that turned
out not to work in the expected way or even worsened the situation.

1.3. Approach

This thesis is structured following the Pattern-Based Design Research (PDR) approach by
Buckl et al. [15] as shown in Figure Accordingly, the desired outcome of the thesis
are artifacts, in the form of pattern candidates, that are relevant and rigorous. The work
is based on an existing knowledge base consisting of the LSADPL by the sebis chair [74]
and a list of concerns that have already been identified and categorized in literature. By
building the research artifacts on the existing knowledge base rigor is ensured [15, 39]. To
identify further concerns and good practices to address the concerns, a single-case, embed-
ded study is conducted at a large German software vendor [80]. This ensures relevancy of

1.3. Approach

Grounding theories Organized collection of reusable|
practice-proven solutions
—
i
. @
guide & structure £ O 0 Deim
E fowe) Theories
2
| T select Solution
observe & conceptualize £ @l Pattern design
3 Language
3 I S —
&
] O [‘Pateem configure
g I:l Candidates
Theory
academics
() Configured
Practice o yd design
(industry) S
@) learn . A .
e) o A deviations < establish
.
N
\
Observations AN
] Configured
design

Figure 1.1.: Overview of the approach of this thesis based on [15]

the created research artifacts for practitioners [39].

To select the appropriate research strategy for the study at the industry partner, Yin [80]
and Benbasat et al. [8] formulate three respectively four questions that can be used as
a guideline. These questions regard whether the observed phenomenon can be studied
outside its natural setting, whether the study focuses on contemporary events, whether
behavioral control is required, and whether there is already an established theoretical base
covering the phenomenon of interest. As this thesis focuses on finding good practices from
industry, the phenomenon of interest cannot be observed outside of its natural setting. The
focus is on agile methodologies at scale, which is a novel field of research, so the study
focuses on contemporary events and there is no sound theoretical base established yet [23|
62]. Finally, the phenomenon is observed in a productive organizational environment, so
behavioral control is not indicated. Considering these points and the guidance in [80], we
selected a single-case, embedded study research method. The research can be classified as
descriptive, because it describes the practices the case organization is employing to address
concerns it faces [60]. It can also be classified as exploratory to a certain extent, because
it seeks new insights about concerns in large-scale agile development. According to the
PDR developed by Buckl et al. [15], the work of this thesis can be mapped to the first two
steps observe & conceptualize and pattern-based theory building & nexus instantiation. Figure
[1.Thighlights the two phases of the PDR approach that are implemented in this thesis.

We selected first, second, and third degree types of data collection for this research, com-
prised of interviews, meeting observations, and other work artifacts like documentation
and coaching slides [60]. The insights gained from the software company are documented

1. Introduction

as artifacts according to the LSADPL [74]. For good or bad practices to be considered a pat-
tern or anti-pattern, the pattern language uses the rule of three [20]. It states that a practice
has to be observed in three independent organizations to be considered a pattern. Thus,
because the conducted study covers a single case, the artifacts created in this work are not
considered to be finalized patterns but pattern candidates.

The remainder of this bachelor’s thesis is structured as follows. In Section [2} the thesis
first explains the relevant scientific foundations, which are necessary to understand the
following work. Section [3|takes a look at other research conducted in the area of scaling
agile practices and coordination of work in large-scale development. Then, in Section [4]
we present the study at the German software vendor. The section explains the research
methodology and the findings in detail. Section 5| presents the key findings of this work
and discusses research quality and limitations. In the final Section [6, we summarize the
work and present possible future work.

2. Foundations

This chapter gives an overview of the foundations on which this thesis is built. Relevant
terms are defined and concepts that are used throughout the following work are explained.
First, in Section [2.1|the theory and origins of patterns are explained. It includes a descrip-
tion of how patterns differ from good practices and a section about how patterns should
be written. Second, in Section[2.2]agile software development is defined and the values be-
hind it are presented. It is also discussed how the agile approach differentiates from other
methodologies for software projects. Third, in Section[2.3]large scale agile development is
described. Concerns of applying agile methodologies at scale that have been identified in
literature are shown, as well as the Large-Scale Agile Development Language (LSADPL)
that this thesis is building on. Finally, in Section [2.4] the theoretical background on work
coordination in organizations is discussed.

2.1. Patterns

This section provides the theoretical background and definitions for the concepts of pat-
terns and pattern languages that are used throughout this thesis.

2.1.1. Definitions

Patterns in the setting of software development have their origin in Christopher Alexan-
der’s work on patterns in urban design and construction [1, 20]. Alexander created the
concept of patterns and pattern languages to document solutions to recurring problems
that can be applied multiple times. His definition of a pattern is as follows:

Each pattern describes a problem which occurs over and over again in our environment,
and then describes the core of the solution to that problem, in such a way that you can
use this solution a million times over, without ever doing it the same way twice.

— Christopher Alexander, A Pattern Language [1]

Most work in software engineering related to patterns and pattern languages reference
to Alexander’s work [20]. As patterns are defined as solutions to recurring problems, they
are not “invented” and do not create new knowledge [45]. Rather, they are emergent [45]].
This means they capture solutions from practice and compile knowledge in a formal way,
such that the knowledge about the solution can be easier accessed by a wider range of peo-
ple [20} 45]. The solution is not captured completely in detail as it is observed, but rather

2. Foundations

in a suitable abstraction to make the solution applicable in a broader context [20].

Besides the concept of patterns there is also the concept of Anti-Patterns. Anti-Patterns
describe alleged solutions to a recurring problem, but lead to more negative consequences
than positive ones [47]. Additionally, Anti-Patterns contain a revised solution that de-
scribes the changes that have to be made to turn the Anti-Pattern into a beneficial pattern
[47, [74].

Usually, patterns do not come individually but as part of a pattern language [21]. This
is due to the fact that applying individual patterns does not suffice to build complex real-
world systems or organizations [64]. The usage of one pattern often yields the opportunity
or need for the usage of other patterns [45]. Pattern languages connect different patterns
with each other and help to understand the collection of patterns as a whole [1]. Consid-
ering the whole language, a complete system or organization can be created [21]]. Thus, a
pattern language can be described as a collection of inter-linked patterns from a common
area of interest [45]. Pattern languages help the reader to identify suitable patterns for their
situation [47]. When several patterns of one pattern language are applied together or after
each other, this is called a pattern sequence [21, 45]].

As already pointed out in the introduction, this thesis seeks to identify and document good
practices. The good practices are also called pattern candidates within this work. The rule
of three [20] is used by the LSADPL to determine the difference of a pattern candidate an
actual pattern [74]. A pattern has to be observed and documented at three different, inde-
pendent organizations; a pattern candidate has to be observed in practice at least once.

2.1.2. Writing Patterns

As stated in the previous section, patterns are not invented by an author, but are emergent.
However, there are certain guidelines on how to formulate a pattern properly to make it
as useful as possible to the audience. The European Conference on Pattern Languages of
Programs (EuroPLoP) provides a website with an introductory package of four paper
to get started with pattern writing. Other authors like Coplien [20] and Kelly [45] also
provide advice on how to write good patterns. The name, problem, and solution sections
are most likely to be the first ones a potential user will look at [36, 45, |78]. Consequently,
when starting to write a pattern, Kelly [45] and Meszaros and Doble [51] recommend to
begin with these three sections of the pattern. Similarly, Harrison [36] and Wellhausen and
Fieser [78] suggest to start with the solution and problem sections. The context, forces,
and consequences are further sections identified to be important for patterns [36, 45, 51,
78]. Kelly [45] and Harrison [36] suggest the name of the pattern being based on the thing
the pattern is building and thus being comprised of nouns. Kelly [45] further underlines to
avoid verb-based naming. Meszaros and Doble [51] present a noun based naming-scheme
as well. However, they also mention the possibility to name the pattern according to the
process used to create the solution using verb phrases [51]. Whether being a noun or verb

'europlop.net Pattern Writing: https:/ /www.europlop.net/content/start-writing
The papers are [36| 38,51} |78]..

https://www.europlop.net/content/start-writing

2.2. Agile Software Development

phrase, the bottom line is that the chosen pattern name should be evocative and conjure
up images that convey an idea of the solution to the reader [36| 51]. The problem section
of the pattern should not be phrased like a “How do you do X?” question. This tends
to invoke a “Do X” solution [78]. Kelly [45] describes that during the writing process
information might move back and forth between the problem and forces sections. The
forces of a pattern help the reader understand the significance of the problem and why the
problem is actually difficult to solve [45]. Both, Kelly [45] and Wellhausen and Fiefer [78]]
emphasize to match the forces with the consequences. Each consequence should describe
how one force is being solved by the solution of the pattern. The solution section should be
sufficiently abstract to make the pattern applicable to different users, but specific enough
to guide the reader what to do [20}45]]. Again, Kelly [45]] describes that information might
move back and forth between the solution and consequences sections during the writing
process. Finally, the context describes the situation in which the pattern is applicable [20].
The context might contain a history of patterns that have already been applied and defines
a scope in which the pattern can be used [20]. Wellhausen and Fiefler [78] stress that the
context is not modified by the application of the pattern. The process of writing a pattern
itself is iterative [38} 45| |78]]. During the writing process the author will most likely rethink
and sharpen the idea of what the pattern is describing [45]. All the sections should be
revisited after the first version of the pattern is created [78].

2.2. Agile Software Development

After the concepts of patterns and pattern languages have been clarify, this section con-
tinues with explaining agile software development. Agile software development is an
important part of the foundations of this thesis.

2.2.1. Definitions and Values

The core assumption that is common for all agile methodologies is the recognition of the
software development process as being empirical [79]. Industrial processes can be classi-
fied either as defined or empirical [65,[79]]. A defined process is a process that can be clearly
defined upfront. Every time it is executed, it produces the same output for a given input
[79]. An empirical process, however, is a process that cannot be designed in its entirety
before execution. It has to deal with uncertainties and requires frequent investigations of
changes and adaptions to new demands [79]. Agile software development methodolo-
gies have been designed to deal with those properties of an empirical process and are able
to handle changing requirements and uncertainty [79]. In 2001, the “Agile Manifesto” [5]
was created to condense the objectives of agile methodologies into four values and twelve
principles. These values are [5]:

1. Individuals and interactions over processes and tools
2. Working software over comprehensive documentation

2. Foundations

3. Customer collaboration over contract negotiation
4. Responding to change over following a plan

The authors of the Agile Manifesto emphasize that “while there is value in the items on
the right, we value the items on the left more” [5]. This means that individuals and in-
teractions, working software, customer collaboration, and responding to change are more
important than processes and tools, documentation, contracts, and following a plan.

1 | Our highest priority is to satisfy the customer through early and continuous deliv-
ery of valuable software.

2 | Welcome changing requirements, even late in development. Agile processes har-
ness change for the customer’s competitive advantage.

3 | Deliver working software frequently, from a couple of weeks to a couple of months,
with a preference to the shorter timescale.

4 | Business people and developers must work together daily throughout the project.
5 | Build projects around motivated individuals. Give them the environment and sup-
port they need, and trust them to get the job done.

6 | The most efficient and effective method of conveying information to and within a
development team is face-to-face conversation.

7 | Working software is the primary measure of progress.

8 | Agile processes promote sustainable development. The sponsors, developers, and
users should be able to maintain a constant pace indefinitely.

9 | Continuous attention to technical excellence and good design enhances agility.

10 | Simplicity-the art of maximizing the amount of work not done-is essential.

11 | The best architectures, requirements, and designs emerge from self-organizing
teams.

12 | Atregular intervals, the team reflects on how to become more effective, then tunes
and adjusts its behavior accordingly.

Table 2.1.: The 12 principles of the Agile Manifesto [5]

The 12 principles of the Agile Manifesto can be found in Table The values and prin-
ciples that are presented by the Agile Manifesto clearly reflect the recognition of software
development as an empirical process. They emphasize to collaborate with the customer of
the product and to adapt to changing environments and needs, instead of sticking to an
upfront designed, defined process.

2.2.2. Distinction from other Methodologies

Besides agile methodologies, which are following an empirical process control (as ex-
plained in the previous section), there are also other methodologies for software devel-
opment process management that are following defined process control structures [65].

2.2. Agile Software Development

These include sequential methodologies, like the Waterfall Model and the V-Model
[61] which are structured along milestones and always focus on one activity at a time.
And also iterative methodologies like the Spiral Model and the Unified Process
are mostly following defined process control. These “traditional” methodologies for soft-
ware development guide people by standardized processes and organization. In contrast,
agile methodologies are designed to tailor processes to the teams and particular projects
[18]. When sequential models are applied, all requirements have to be defined upfront
the project in the design phase. No adaption is possible throughout project execution [65].
Iterative methods like the Spiral Model, while at least being responsive to change between
activities, still assume that issues of a finished activity cannot be changed or altered after-
wards [12]]. Agile methodologies address these shortcomings by time-boxing development
iterations and frequently incorporating customer feedback into the development [79)].

2.2.3. Scrum

As already mentioned in the introduction, there are several different frameworks for agile
methodologies. According to the annual “State of Agile” report, Scrum and hybrids of
Scrum and XP are among the most commonly used agile methods at the moment [40]. The
Scrum methodology was used in all observed teams at the case organization, therefore this
section gives an overview of Scrum.

The Scrum framework was presented in 1995 by Ken Schwaber and Jeff Sutherland at
the OOPSLA conference [65]. It treats systems development processes “as a controlled
black box” [65], which is how Schwaber calls empirical processes in this work. Scrum has
been designed for small, cross-functional teams between three and six people . Today,
Sutherland and Schwaber are maintaining “The Scrum Guide” which holds up to date
information about Scrum and its execution.

Sprint

Retrospective

Cg

=Hil!
1
Sprint Sprint
Planning Review
Product Sprint Increment
Backlog Backlog

7 Scrum Tea™

Scrum Framework © Scrum.org

Figure 2.1.: Scrum Framework illustration by

2. Foundations

The main concepts of Scrum are three artifacts, three roles in the Scrum team, and five
events [59, 65, 167]:
Product Backlog. The product backlog is the first artifact that is created for the develop-
ment [59]. It lists all features and required capabilities of the product. New work items
may be added to the product backlog in the beginning and also throughout the course of
development. The items in the product backlog are prioritized by the customer [67].
Sprint Backlog. The sprint backlog is the artifact that contains items form the product
backlog on which the team is working during the current iteration [67]. The items from
the product backlog are selected according to their priority [59]. The sprint backlog must
not be altered during an active sprint execution.
Increment. An increment is the output artifact produced by the development team during
one iteration. It is the result of all sprint backlog items that were finished in the current
sprint [67].
Product Owner. The role of the Product Owner (PO) is twofold [59]. The PO has to ensure
that the needs and priorities of the customer are understood and grooms and prioritizes
the product backlog. The PO is also responsible for communicating to the development
team what has to be built and for ensuring that the project is economically viable. “[...] the
product owner is focused on building the right product” [59].
Scrum Master. “The Scrum Master is a servant-leader for the team” [67]]. The Scrum Mas-
ter ensures that everybody in the team understands Scrum, its values and principles, and
that it is applied correctly.
Development Team. The development team is doing the work that is defined in the sprint
backlog. They are producing a product increment in each iteration. Ideally, the develop-
ment team has all the required skills to build the required outcome of the project. “[...] the
development team is focused on building the product right” [59].
Sprint. An iteration in Scrum is called sprint. A sprint is a time-boxed period of time. Dur-
ing a sprint the development team creates a new product increment based on the sprint
backlog and the results of the sprint planning meeting [59].
Sprint Planning. A sprint is preceded by a sprint planning meeting. The meeting is time-
boxed and the Scrum Master enforces this time-limit. The complete scrum team takes part
in the planning and determines collectively what should be part of the sprint backlog for
the next product increment [67].
Daily Scrum. Every day during a sprint, the development team gathers for a short daily
scrum meeting. The team inspects the progress and adapts the work plan for the upcom-
ing day [67].
Sprint Review. After the sprint, a sprint review meeting is used to inspect the increment
that has been produced during the sprint. The team can make adjustments to the product
backlog, if necessary [59].
Sprint Retrospective. After the sprint review meeting and before the next sprint planning
meeting, the complete scrum team holds a sprint retrospective meeting. They analyze their
workflows and processes to identify opportunities to improve work and collaboration [67].
It is important for continuous and incremental learning [59].

10

2.3. Large-Scale Agile Development

As these artifacts, events, and roles reflect, the goal of Scrum is to iteratively create prod-
uct increments. Because the sprints are short and time-boxed, a new increment is created
very frequently and valuable customer feedback can be gathered based on it. This allows
the Scrum team to quickly adjust to feedback, new requirements, or changes in the envi-
ronment. This helps to avoid developing the “wrong” product [59].

2.3. Large-Scale Agile Development

This thesis builds on the results of previous research that has been conducted in the con-
text of the same research project by the sebis chair. The utilized knowledge base consists
of a literature review that identifies recurring concerns in large-scale agile development
[75] and the LSADPL [74]. This chapter explains them in the following. Additional liter-
ature sources for concerns in large-scale agile software development are discussed in the
following as well.

2.3.1. Definition

To talk about large-scale agile and the benefits and concerns related to it, first the term
large-scale has to be defined. In related literature no single final definition can be found.
Both, Scheerer [62] and Uludag et al. [74] reference an attempt by Dingseyr and Moe [26]
to collect definitions of large-scale agile development at the 2014 XP Conference. Dingsoyr
and Moe [26] collected a list of 16 definitions given by participants. They recognize that
many of the definitions are based on some kind of size metric, e.g., team number, number
of people involved, or lines of code. However, they find that these metrics are describing
the term large-scale very inconsistently [26]. In another paper, Dingsoyr et al. [24] propose
a taxonomy that is based on the 7 +/- 2 rule of thumb. According to this taxonomy, large-scale
is defined as more than one team (with team size following the 7 +/- 2 rule of thumb) and
less than ten teams. Projects involving more than nine teams are defined as very large-scale
by Dingseyr et al. [24]. The distinction made by [24] between small-scale and large-scale can
be explained by the additional need for inter-team coordination as soon as more than one
team are working together on a project [24]. In this thesis the taxonomy by Dingseyr et al.
[24] is used to define what is large-scale.

2.3.2. Concerns

Uludag et al.: Identifying and Structuring Challenges in Large-Scale Agile
Development based on a Structured Literature Review. 2018.

Using a structured literature review, Uludag et al. [75] compiled a list of 79 concerns in
large-scale agile development from 73 sources. The reviewed literature was coded fol-
lowing the approach by Cruzes and Dyba [22], using an individual code family for each

11

2. Foundations

pattern type and the concerns. Similar code families are used in this thesis to code the col-
lected data. The found concerns are linked to stakeholders and are categorized. The liter-
ature review identified 14 consolidated stakeholder categories and 11 concern categories.
The concern categories are culture & mindset, communication & coordination, enterprise ar-
chitecture, geographical distribution, knowledge management, methodology, project management,
quality assurance, requirements engineering, software architecture, and tooling. As this thesis fo-
cuses on coordination and methodology, the categories communication & coordination and
methodology are of particular interest. Of the 79 concerns identified by Uludag et al. [75] 11

are of one of these two categories. The relevant concerns are shown in Table

ID Name Category

C-1 | How to coordinate multiple agile teams that work on | Communication & Coordination
the same product?

C-6 | How to deal with incorrect practices of agile devel- | Methodology
opment?

C-16 | How to establish self-organization? Communication & Coordination

C-20 | How to facilitate communication between agile | Communication & Coordination
teams and other teams using traditional practices?

C-44 | How to deal with communication gaps with stake- | Communication & Coordination
holders?

C-49 | How to deal with increased efforts by establishing | Communication & Coordination
inter-team communication?

C-59 | How to establish a common understanding of agile | Methodology
thinking and practices?

C-63 | How to explain requirements to stakeholders? Communication & Coordination

C-75 | How to form and manage autonomous teams? Communication & Coordination

C-78 | How to build an effective coaching model? Methodology

C-79 | How to synchronize sprints in the large-scale agile | Communication & Coordination
development program?

Table 2.2.: The 11 concerns from [75] that are relevant to this thesis

Scheerer: Coordination in Large-Scale Agile Software Development. 2017.

Scheerer conducted a multiple-case, embedded study at SAP [62], a large German enter-
prise software company. The objective was to study coordination of teams in multi-team
setups in large-scale agile software development. They focused on how this coordination
changes if the coordination configuration changes. During the case study, five multi-team
setups were examined. They created a research framework to study those multi-team se-
tups that comprises of [62]:

* a coordination configuration that integrates three aspects of coordination (type, locus,
and direction),
* a trigger that enacts a coordination configuration as a reaction,

12

2.3. Large-Scale Agile Development

¢ the integrating conditions common understanding, predictability, and accountability
that lead to coordinated action,

* and the contingency factors like uncertainty or dependencies, that can affect the reac-
tion of the system to a trigger and which coordination configuration is enacted.

ID Name Category

C-80 | How to deal with a competing concept deadlock? Communication & Coordination

C-81 | How to deal with missing communication of decom- | Communication & Coordination
mitment?

C-82 | How to deal with unclear mutual expectations? Communication & Coordination

C-83 | How to deal with lacking knowledge of another | Communication & Coordination
team’s activities?

C-84 | How to deal with unknown dependencies between | Communication & Coordination
teams?

C-85 | How to deal with increase in geographic dispersion? | Geographical Distribution

C-86 | How to deal with corruption of a shared codebase? | Methodology

C-87 | How to deal with a work item spanning across | Communication & Coordination
teams?

C-88 | How to deal with unclear work items? Communication & Coordination

C-89 | How to deal with unclear usage of a new develop- | Communication & Coordination
ment framework?

C-90 | How to deal with major testing failures of new fea- | Communication & Coordination
ture?

C-91 | How to deal with new cross-team feature originating | Communication & Coordination
from one team?

C-92 | How to deal with priority conflict within takt? Communication & Coordination

C-93 | How to deal with assumption mismatch? Communication & Coordination

C-94 | How to deal with late delivery of needed functional- | Communication & Coordination
ity?

C-95 | How to rapidly deliver a necessary patch? Methodology

C-96 | How to deal with unresolved prioritization of a | Communication & Coordination
topic?

C-97 | How to deal with a cross-team item facing asymmet- | Communication & Coordination
ric team knowledge?

C-98 | How to deal with recognition of a reuse possibility? | Communication & Coordination

C-99 | How to deal with discovery of redundancies? Communication & Coordination

Table 2.3.: The 20 change processes by [62]

In the first step, each of the five observed multi-team setups were scrutinized in a single-
case analysis according to the described research framework. Afterwards, integrating con-
ditions were identified in a cross-case analysis. 20 change processes where coordination
did or did not work well in the different multi-team setups are presented. Scheerer [62] de-
rived coordination configurations from these change processes and compared them. The
20 change processes are displayed in Table The findings of the study show that if a

13

2. Foundations

trigger event in the coordination between teams reveals an insufficient realization of an in-
tegration condition, a change in coordination configuration is invoked that leads to achieve
the missing integration conditions [62]. Further, Scheerer [62] identified six specific coor-
dination configurations that realize one of the integration conditions.

2.3.3. Large-Scale Agile Development Pattern Language

This thesis uses the LSADPL as a basis [74]. The pattern candidates and concerns that are
observed in the study with the industry partner are formatted and categorized according
to the structures of the LSADPL. This section describes the LSADPL and its important
concepts. A comparison of the LSADPL to other relevant pattern languages from the field
of agile development can be found in Section 3|

Stakeholder
identifier
name
alias

*

has
*

Concern
identifier
name
category
scaling level

is addressed by * is addressed by
is addressed by

Principle = LSAD Pattern * LSAD Anti-Pattern =

identifier identifier identifier
name see also name see also name see also
alias alias alias
summary * summary * summary *
type example example
binding nature see also | context see also | context
example * * problem * * problem
context forces forces
problem solution general form
forces variants consequences
variants consequences revised solution
consequences other standards other standards
other standards known uses
known uses

A

|
CO-Pattern M-Pattern V-Pattern
type
data collection

Figure 2.2.: The Large-Scale Agile Development Pattern Language by [74]

14

2.3. Large-Scale Agile Development

The formal definition of the LSADPL is depicted in Figure The key concepts are
explained in the following, based on the descriptions by the authors of the LSADPL [74].
Concern. Concerns are tasks or challenges of certain stakeholders. A Concern is catego-
rized either as communication & coordination or methodology in this thesis. However, the
LSADPL as described in [74] offers various additional categories. A Concern can be ad-
dressed by one or multiple Patterns, Anti-Patterns, and Principles.

Stakeholder. A Stakeholder can be any person that has some kind of interest or involve-
ment in the project. Stakeholders may have Concerns in their work.

Pattern. A Pattern is a pattern as formally defined in Section In the LSADPL, a Pat-
tern can be categorized as methodology (M-Pattern), coordination (CO-Pattern), or viewpoint
(V-Pattern), depending on which kind of solution it offers [74]. Methodology Patterns de-
scribe concrete steps to address a concern. Coordination Patterns describe coordination
mechanisms (see also Section[2.4). Viewpoint Patterns describe visualizations.
Anti-Pattern. An Anti-Pattern is a Pattern that may sound promising to solve a concern,
but it actually does not solve the problem. An Anti-Pattern describes common mistakes in
the solution section. Additionally, it provides a revised solution section which describes
how to avoid these mistakes to actually solve the problem [74].

Principle. Principles provide steps or guidelines to address a certain Concern [74]. How-
ever, they do not necessarily provide a viable solution to the Concern, but rather an assis-
tance on the way to solve a Concern.

Because the LSADPL Pattern is a key concept for this thesis, the different sections of a
Pattern are now described in detail according to the documentation template from [74].
Identifier, Name, Alias. Each Pattern starts with an unique identifier. Further, the Pattern
has an unique, descriptive name as well as an alias section for other known names of this
Pattern.

Summary. A short summary of the solution provided by the Pattern.

Example. A story that showcases a situation where the Pattern is used.

Context. Description of the situation in which the addressed Concern rises and the Pattern
is applicable.

Problem. References one or more Concerns that are addressed by the solution of this
Pattern.

Forces. A description of the forces that drive the problem and make it hard to solve.
Solution. The heart of the Pattern is the solution that solves the referenced Concerns in
the given context. The solution is described in this section.

Consequences. Every Pattern implies benefits as well as liabilities when being applied.
They are listed in this section.

Variants, Known Uses, See Also, Other Standards. These sections provide references to
various other sources. "Variants” describes possible variations of the Pattern. "Known Uses’
lists real cases where the Pattern is applied. ‘See Also” holds references to other LSADPL
patterns. ‘Other Standards’ points to other sources or frameworks where concepts similar
to the Pattern are documented.

15

2. Foundations

2.3.4. The Nexus Framework

As explained in Section Scrum focuses on small, co-located teams. But in practice
often more than one team are working together on complex products. Throughout the last
few years, due to the proven benefits of agile methodologies, large companies have gained
increasing interest in applying agile methodologies at their bigger projects as well [26].
Thus, scaling agile frameworks have emerged that guide users to apply agile practices in
larger projects and organizations. While all observed teams of this study did use Scrum,

Nexus Sprint Retrospective

Product Nexus Sprint Nexus Sprint
Backlog Planning Backleg

Figure 2.3.: Nexus Framework illustration by

the case organization did not use any scaling agile framework. However, towards the end
of this study in August 2019, the teams of Product A (see Section[4.2) started piloting using
the Nexus framework for their inter-team coordination. They decided to do so because the
overall project had grown significantly. Therefore, in this section the Nexus framework is
described.

The Nexus framework is intended to apply Scrum in a scaled environment [11]. The
Nexus framework is focused on multiple Scrum teams working together on a single prod-
uct backlog, team coordination, and dependencies between teams . Just like Scrum,
Nexus comes with roles, events, and artifacts [66]. They are explained in the following.
The Scrum roles, events, and artifacts, which still apply in the Nexus framework, are not
mentioned again. They can be looked up in the Scrum description in Section2.2.3]

Nexus Sprint Backlog. In Nexus, each team continues to have its own Scrum sprint back-
log. To make a plan for the sprint and to make transparent what is done by which team
during the sprint, Nexus adds the Nexus Sprint Backlog artifact [66]. It consists of the in-
dividual team sprint backlogs [66].

Nexus Integration Team. Nexus adds the role of the Nexus Integration Team [66]. The

16

2.4. Coordination Theory

Nexus Integration Team is responsible for coordination and integration in the Nexus, but
also for supervision of the application of Scrum and Nexus [11]. It usually consists of a
Scrum Master, the Product Owner, and other members [66].

Nexus Sprint Planning. In the Nexus Sprint Planning, representatives of each Scrum team
select tasks for the upcoming Sprint for the teams [66]. Each team then plans their work
in individual Scrum sprint plannings [66]. The overall sprint goals and work assignments
are visualized using the Nexus Sprint Backlog [66]].

Nexus Daily Scrum. Just like in Scrum, there is a short daily meeting. In the Nexus Daily
Scrum, team representatives discuss integration progress and possible dependencies be-
tween the work of their teams [11]]. If any problems are encountered, the individual teams
can further discuss how to address them in their own daily scrum meetings [66].

Nexus Sprint Review. At the end of each sprint, the new product increment is reviewed
and feedback is gathered in the Nexus Sprint Review [66]. All teams and stakeholders take
part in the meeting and the product backlog may be modified if necessary [66]. Because
individual teams might not be able to create a viable product increment on their own, the
Scrum Sprint Review for the Scrum teams is removed and replaced by the Nexus Sprint
Review [11].

Nexus Sprint Retrospective. The Nexus Sprint Retrospective includes three steps [66]].
In the first step, representatives of the teams meet to discuss common challenges of the
last sprint. Second, each team holds their individual Scrum sprint retrospective to discuss
these challenges. Finally in the third step, the representatives of the teams meet again to
discuss measures that have been proposed by the teams.

Other Scaling Agile Frameworks

Additionally to the Nexus framework, there are several other scaling agile frameworks.
Some interviewees in the study mentioned they had made experiences with Scaled Agile
Framework (SAFe®) in the past. SAFe® is the most widely used scaling agile framework,
followed by Scrum of Scrums [40]. A comparison of popular scaling agile frameworks,
including SAFe®, Scrum of Scrums, and others, has been created by Ebert and Paasivaara
[30]. A more extensive evaluation and comparison of 20 scaling agile frameworks has been
conducted by Karabacak [42].

2.4. Coordination Theory

Because this thesis focuses, among others, on coordination concerns and practices, the fol-
lowing section explains the theoretical background of work coordination in organizations.

Coordination is the management of dependencies [50, 63]. Accordingly, coordination
can be achieved by characterizing and grouping dependencies into different categories,
and applying mechanisms to manage these dependencies [50]. Examples for basic depen-
dency categories where coordination processes are needed are tasks depending on limited

17

2. Foundations

shared resources, sequential consumer-producer workflows, or task-subtask relationships
[50]. Besides the management of dependencies, Malone and Crowston [50] also describe
the group decision making and communication processes as being important for coordina-
tion. These two coordination processes can also be seen as management of dependencies.
However, [50] explicitly explain them because of their importance. Figure [2.4 shows the
coordination processes by Malone and Crowston [50]. They state that all the mentioned
instances of coordination comprise of actors performing activities that are interdependent
[50].

shared resources
* Managing sequential
producer / consumer

allocate resources
* Deciding how to
segment tasks

Coordination Dependency Management | Group Decision Making Communication
Process
Examples * Managing limited * Deciding how to * Developing standards

for communication
 Establishing common
knowledge

relationships

* Managing parallel
workflows

* Managing task /
subtask relationships

Figure 2.4.: The coordination processes by Malone and Crowston [50]

Van De Ven et al. [77] define a categorization of coordination mechanisms. They present
three alternative modes that are used by organizations to coordinate their work activi-
ties. These modes are impersonal mode, personal mode, and group mode [77]. All plan-driven
coordination such as schedules, rules, and policies are categorized in the impersonal co-
ordination mode. They are codified and the required actions are coordinated impersonal
by these codes [77]. In contrast to the plan-driven impersonal coordination mode, the other
two coordination modes, personal mode and group mode, are based on mutual adjustment
[77]. This means they factor in feedback [73, |77]. The personal coordination is done by
individual persons or roles via vertical or horizontal communication channels. Individu-
als adjust their work based on personal interaction with others. The group mode relies on
scheduled and unscheduled coordination mechanisms for groups, such as communication
events and group meetings [77]. Further, Van De Ven et al. [77] also identify three deter-
minants that affect which coordination mode — or combination of coordination modes —
is used in specific situations. These determinants are task uncertainty, task interdependence,
and size of work unit [77]. The more difficult and variable a task is, the more difficult it is to
coordinate. Therefore, personal mode and group mode are of increasing importance. Sim-
ilarly, higher interdependence between different work flows is accompanied by increases
in group mode coordination. Finally, increased size of work units leads to increased usage
of the impersonal coordination mode [77]].

18

2.4. Coordination Theory

Espinosa et al. [32] categorize the three coordination modes by Van De Ven et al. [77] as
explicit coordination. They add the category of implicit coordination [32]. Implicit coordina-
tion mechanisms are existing in the shared team cognition, but are not applied purposely
for coordination of activities [32]. Such implicit mechanisms can be assumptions about
the other teams’ tasks or knowledge about the task and the team [32]. Figure 2.5shows a
combination of the three coordination modes by Van De Ven et al. [77] and the additional
classification by Espinosa et al. [32].

Coordination Explicit .
Implicit
Mode Impersonal Mode | Personal Mode Group Mode
* Plans * Individual role |+ Staff meetings |* Common
* Schedules occupants or committees assumptions
I 1 * Policies * Scheduled or * Shared
xampies * Information & unscheduled knowledge
Communication * Prior experience
Systems
| Task Uncertainty |1 Task Uncertainty |1 Task Uncertainty
Effect of 1 Task 1 Task 1 Task
Determinant | Interdependence Interdependence Interdependence
Increase on T Size of Work Unit T Size of Work Unit l Size of Work Unit
Usage
Classification | Programming Mutual Feedback

Figure 2.5.: The three coordination modes by [77] (blue), combined with the classification
by [32] (white)

19

2. Foundations

20

3. Related Work

This chapter summarizes existing literature on topics related to the objective of this thesis.
First, Section 3.1| presents related literature on the topic of scaling agile development prac-
tices. Then, Section [3.2| summarizes related work on coordination of large-scale software
development work. Section 3.3|compares other pattern languages to the LSADPL, which
is used in this thesis for structuring the findings.

3.1. Related Work on Large-Scale Agile Development

As already described in the introduction, the topics “agile and large projects” and “inter-
team coordination” are of interest for practitioners [25, 33]. Following this research in-
terests, Laanti published a paper in 2014 examining the characteristics and principles of
scaled agility [46]. In a first step, Laanti [46] identifies eight aspects of agility that should
be considered when scaling agile in an organization. The Strategic and Business Agility, as
well as the Agile Organization aspect, focus on combining the business strategy and orga-
nizational structures with agility [46]. The People Agility and Organizational Culture are
aspects regarding the adoption of agile values by the people. They aim at aligning the or-
ganizational values with the agile values [46]. The Tools Agility aspect focuses on having
a work environment and tool-set that enables agile working in the organization [46]. The
Product Agility relates to being agile in what to build [46]]. The Payoff Agility aspect refers
to being agile in where to invest the available money [46]. In the second step of the paper,
Laanti [46] presents a list of 21 principles for scaled agility. For each of the principles an
explanation is provided and the values it originates from are explained.

Dikert et al. [23] conducted a systematic literature review focusing on challenges and
success factors of adoptions of agile methods at scale. For their literature review, Dikert
et al. [23] defined large-scale software development as including at least 50 people or at
least 6 teams. The result of the literature review is a list of 35 challenges divided into nine
challenge categories, and 29 success factors divided into eleven success factor categories.
The challenge categories are Change resistance, Lack of investment, Agile difficult to implement,
Coordination challenges in multi-team environment, Different approaches emerge in a multi-team
environment, Hierarchical management and organizational boundaries, Requirements engineering
challenges, Quality assurance challenges, and Integrating non-development functions. The suc-
cess factor categories identified by Dikert et al. [23] are Management Support, Commitment
to change, Leadership, Choosing and customizing the agile approach, Piloting, Training and coach-
ing, Engaging people, Communication and transparency, Mindset and Alignment, Team auton-

21

3. Related Work

Focus Area Identified Characteristics

(1) Solution description was being developed using
teamwork

Customer Involvement (2) Continuous and iterative customer involvement

(3) Boundaries between need analysis, solution description
and development were blurred

(1) Tension between up-front and emergent architecture
(2) Demanding architect role in large-scale projects

) Coordination was achieved by combination of arenas
)

)

Software Architecture

Inter-Team Coordination | (2) Use of coordination arenas changed over time
(3) Importance of informal coordination arenas

Table 3.1.: The key characteristics of the case program in the three focus areas studied by
Dingsoyr et al. [27]

omy, and Requirements management. In their literature review Dikert et al. [23] also found
that Scrum was the most frequently used agile methodology in the reviewed literature,
followed by XP. Combinations of those two methodologies as well as with other methods
were quite commonly used [23].

The work by Dikert et al. [23] on challenges and success factors for scaling agile develop-
ment was not used as a foundation for this thesis because it already served as an input for
the literature review of Uludag et al. [75]. This literature review [75] in turn did serve as a
foundation for this thesis.

Dingseyr et al. [27] conducted a case study at a large agile software development pro-
gram. They investigated how agile methodologies have been adapted to fit the large-
scale setting and to complement with non-agile practices. The studied case consisted of
12 co-located teams, with 175 people being involved. The project had been finished by
the time the research was conducted. The focus areas of their case study were customer
involvement, software architecture, and inter-team coordination in scaled agile develop-
ment. Three organizations did take part in the case project. Thus, Dingseyr et al. [27]
conducted a group interview for each focus area with people from each participating or-
ganization respectively. As a second type of data they studied documents. For each of
the studied focus areas of the case organization, Dingseyr et al. [27] identified several key
characteristics. These key characteristics are listed in Table

3.2. Related Work on Coordination

In Section 2.4l the theoretical basics of coordination were discussed. This section focuses
on related work that has been created on coordination in large-scale agile software devel-
opment. In agile software development intra-team coordination is achieved by team-level
mechanisms, such as the Daily Scrum meetings or Sprint Plannings. This section focuses

22

3.2. Related Work on Coordination

on related work about large-scale development environments and inter-team coordination.

Dingsoyr et al. conducted a study at two large software development programs.
Their study focused on how group mode in the form of unscheduled and scheduled meet-
ings is applied in inter-team coordination and how it changes over time. They state, that
the mutual adjustment coordination (personal and group mode) in large software projects
usually comes with hierarchy and bureaucratic structures [28]. The resulting group mode
coordination is therefore often implemented using layered adjustment structures, such
as Scrum of Scrums meetings ‘on top” of team-internal Scrum meetings [28]. They con-
clude that group mode coordination is essential in large-scale agile software development
projects. They especially highlight the importance of unscheduled meetings for inter-team
coordination and knowledge exchange [28].

Nyrud and Stray conducted a case study to investigate which coordination mecha-
nisms are used for inter-team coordination in large-scale agile software development. For
their study, they selected a digitization project. They identified eleven different coordina-
tion mechanisms and mapped them onto the three coordination modes [55]]. The observed
project used five impersonal, one personal, and six group mode coordination mechanisms.
The mechanism Informal Ad Hoc Communication is categorized as personal mode and group
mode, hence the sum of eleven identified mechanisms. Figure[3.1|depicts their mapping of
the mechanisms onto the coordination modes. We present a similar mapping at the find-
ings of this thesis in Section 4.5

Coordination
Mechanisms

A

Agile Process

Jira

Rules for QA

Open Work Area

Instant Messaging

Informal Ad Hoc Conversations

Stand-Up Y Stand-Up Y Stand-Up Y Stand-Up Y Stand-Up Y Stand-Up Y Stand-Up Y Stand-Up Y Stand-Up Y Stand-Up
Meeting Meeting Meeting Meeting Meeting/ Meeting Meeting Meeting Meeting Meeting

Retro- Backlog
spective Grooming
>
Monday Tuesday Wednes- Thursday Friday Monday Tuesday Wednes- Thursday Friday Time

day day
Weekend

. = Impersonal mode O = Group mode (scheduled) O = Personal mode (horizontal) and
Group mode (unscheduled)

Figure 3.1.: Mapping of the identified coordination mechanisms by

Sprint
Planning

23

3. Related Work

Bick et al. conducted a multiple case study at SAP SE, to research how inter-team co-
ordination is achieved in large-scale agile software development [9]. They conducted 68
interviews and identified five different coordination mechanisms that can be used to scale
agile work [9]:

¢ Coordination via a central, dedicated organizational unit.

* Proxy collaboration via meetings of team representatives at the next higher hierarchy
level.

¢ Centralized plannings that use decentralized input from all development teams.

e Full collaboration by running a planning workshop with all members of the devel-
opment program.

* Need based ad hoc communication.

They conclude that proactive dependency management between development teams is
beneficiary and possible, both in settings of top-down and bottom-up coordination [9]].

Paasivaara et al. [56] conducted a multiple case study with two organizations. They
interviewed 58 practitioners about how their organizations handled the inter-team coor-
dination in the large-scale distributed Scrum setups. In the study, they found that both
organizations were relying on a layered structure of Scrum-of-Scrums (SoS) meetings. The
first organization had localized Scrum-of-Scrums meetings followed by a global SoS meet-
ing. The second organization used feature specific SoS in combination with a global SoS
meeting. Paasivaara et al. [56] conclude, that in both cases the global SoS meetings worked
poorly because of disjoint work areas and interests of the participants. In contrast, they
find that the localized and feature specific SoS meetings were being perceived as generally
useful [56].

3.3. Related Work on Pattern Languages

Similar to the LSADPL, other research projects have worked on formalizing practices in
pattern languages. This section gives an overview of pattern languages for agile software
development, large-scale software development, or both areas. The initial authors of the
LSADPL have also created a similar overview [74]. They focus on the works of Coplien [19,
21]], Harrison [37], Taylor [71], Elssamadisy [31], Vdlimaki [76], Beedle [6,|7], and Mitchell
[53]. The overview following here is extending this comparison with additional sources of
pattern languages.

Ambler. Process Patterns: Building Large-Scale Systems Using Object Technology.
1998.

In this work [3], Ambler presents a pattern language containing process patterns to ap-
ply object-oriented software development in large-scale environments. The patterns are
targeted at medium to large organizations [3]. Ambler defines his process patterns as ac-
tivities for developing object-oriented software, that describe practices to follow but are
not detailed descriptions of how to implement them. The work does not use or reference

24

3.3. Related Work on Pattern Languages

any agile approaches. Instead, a custom software development process is created, that is
following a linear structure in general. This process consists of the four phases Initiate,
Construct, Deliver, and Maintain. Each phase itself is structured iteratively, resulting in a
serial process that consists of iterative phases. According to this hierarchy, the patterns are
structured into phase patterns, stage patterns, and task patterns. In this work [3], Ambler
describes the patterns for the first two phases of the object-oriented software process, Ini-
tiate and Construct.

Ambler. More Process Patterns: Delivering Large-Scale Systems Using Object Technol-
ogy. 1999.

This work by Ambler [2] is the extension of [3]. It describes the second part of the patterns
in Ambler’s object-oriented software process for the phases Deliver and Maintain. The fo-
cus, categorization, and structure of the pattern language and its patterns is the same as in
(3.

Bozheva, Gallo. Framework of Agile Patterns. 2005.

Bozheva and Gallo [14] present a framework for patterns with specific consideration of
patterns that originate from agile methodologies. However, the pattern language is not
focused on large-scale development settings. The framework not only consists of 39 pat-
terns, but also contains seven Principles, eleven Concepts, and relationships in the form
of invokes and supports. In the framework, the activities of one pattern can invoke other
patterns, and the implementation of one pattern can be supported by other patterns [14].
Concepts are similar to patterns and share their attributes, except that there are no activi-
ties associated with them. They are used to describe essential characteristics of important
concepts in agile methodologies. Principles are people-oriented and flexible rules. They
are described with the attributes Intent, Origin, and Guidelines. Compared to the LSADPL,
this framework shows some similarities. Both languages have patterns, principles, as well
as relationships between them [14} |74]. However, while the LSADPL holds an explicit class
for stakeholders [74], the framework by Bozheva and Gallo [14] attributes roles to patterns.

Lescher. Patterns for Global Development: How to Build One Global Team? 2010.

The patterns created by Lescher [49] focus on building a distributed, global team and facil-
itating efficient communication and collaboration among the team members and locations.
The goal of the patterns is to deal with the problems of geographic distribution such as lo-
cal sub-grouping and missing trust between team members [49]. The five patterns all stem
from the global development efforts made at Siemens, a large German multi-industry com-
pany. Lescher [49] groups the practices into two categories, one focusing on team-building
and the other focusing on communication. The work focuses on large-scale software de-
velopment but is not specifically for agile setups.

25

3. Related Work

Monasor et al. Towards a Global Software Development Community Web: Identifying
Patterns and Scenarios. 2013.

In contrast to the other presented related pattern languages, Monasor et al. [54] do not
identify any patterns in their work directly. Instead, they developed a method for collect-
ing practice oriented scenarios and patterns regarding Global Software Development. This
should make them more applicable for practitioners than generalized patterns identified
by other research [54]. The work is presented as a Community Web and focuses on Ped-
agogical Patterns that help practitioners to build their own set of practices on top of them
[54]. Anti-Patterns can also be part of the collected scenarios and patterns. Categories
are not part of the work, instead a hierarchical tree-structure is used to arrange the pat-
terns. This hierarchy is extensible horizontally and vertically, i.e., patterns can be added
and grouped using the tree-structure. Additions and extension can be done by contrib-
utors [54]. The method does not focus on any specific development process model, but
is applicable to any used development process [54]. Thus, agile methodologies are not a
region of focus.

Sutherland et al. Teams that Finish Early Accelerate Faster: A Pattern Language for
High Performing Scrum Teams. 2014.

Sutherland et al. [70] state that Scrum can be explained in its basics in only two minutes.
They show nine patterns that reflect the very core of the Scrum practices [70]. The goal
of the work is to increase the amount of successful projects which are using the Scrum
methodology [70]. The patterns address the major problems that teams are facing dur-
ing the application of Scrum in the development process. They are arranged into three
categories: patterns to get ready for the sprint, patterns to deal with common disruptive
problems during a sprint, and patterns to achieve the hyper-productive state [70]. The pat-
terns are not formatted in a strict way, but are rather presented as mostly free-text. The
clear focus of the work is on the agile Scrum methodology, but no focus is on large-scale
situations.

Kausar, Al-Yasiri. Distributed Agile Patterns for Offshore Software Development. 2015.
Kausar and Al-Yasiri [44] have conducted a literature review to identify distributed agile
patterns. They focus on development projects making use of offshoring to other countries
and agile methodologies. In contrast to normal large-scale development, distributed off-
shore development often makes use of benefits such as lower wages, higher availability
of qualified work personnel, and market proximity in the offshoring countries [44]. How-
ever, there are also many similarities between large-scale development and offshoring sce-
narios. In both cases the development teams have to deal with additional concerns such
as trust, communication and coordination, time-zones, and cultural issues [44]. Further,
Kasuar and Al-Yasiri lay a strong emphasize on using agile methodologies in the consid-
ered scaled development environment [44]. In their literature review they identified 15
distributed agile patterns. The patterns were reviewed and verified in interviews with com-
panies [44]. The patterns are arranged into four categories: Management patterns, Communi-

26

3.3. Related Work on Pattern Languages

cation patterns, Collaboration patterns, and Verification patterns [43]. The catalog of practices
focuses on addressing the concerns of distributed offshore software development while
using agile methodologies [44].

The following tables show all the explained pattern languages (Tables [3.2| and and
also the pattern languages compared by the authors of the LSADPL [74] (Tables
and [3.6). For each pattern language, the pattern attributes are shown. The content, scope,
and categories of the pattern languages are also shown again in the tables.

27

3. Related Work

JuawReueA
syuswImMbay pue 30901 (9

)
coﬂmuﬁwmw oo juswaAoxdwiy S$ad01J 91eMIJOS (G) suzayed ssavoxd asey (¢)
qur ¥ o MM@NV yuswadeury oenuo)) () suraped ssaooxd adeig (7) | samogaje)
'PIqUIEaL uonyezrue3i() 92Inosay (g) suzajyed ssaooxd ysey, (1)
pue 3O (1) uSsaq (2)
3unsay 1 voneyuawardwy (1)
surned
g 6< 81 70 I2qUINN
- ° - aress-adre[
A N A uo sndog
0 S 0 e
N A N uo Sndoq
9AT}IJJd UOTJRIOR[[0D suoned o
PUE UOI}EDTUNWIWOD
SPUI DUB Wes BurA[dde 1053 areuon}ERI UO ST SNDOJ juawrdoreAdp aremijos pajuarIo-303[qo 1)
e p ! Teads ym sardojopoyjow aide 3eds-a31e[0} WNIPAW IO SUIdNE] 29 adodg
ponquistp A[eqops | o Sumeurs
J31p woiy Surpeur3ro SuIaeJ
© pIng 0} swvpeJ
suzayped pajeray
1X3u0d 3unynsay SoUTTaDMm Surpeay poPUSWILLIOdIY] PUL SIOUIDJY
*xx 1 \M.oow ‘ropdey D SIY L, Ul paurea] SABH NOX Jeym
‘uonnio , ISTP09 SS3D0.1
“88.8%:” SORIALIY \mmwuﬁMWo Bpumm
. ‘so[oy y . SoINqLIRY
S9010 , SuUOnIPUO)) JIX :IXIU0)) JunNsay
we[qoIg orreuadg uoryedrddy /(s uonn[og ureg
1X93U0D) %HMMMMU ‘SUOT)TPUO)) ATJUy :JXJU0D) [eRIU]
o A O ‘uonydLIdsSap 3x9) 991
, JwIeN /
UOT}RATIOIN awreN
‘QureN)
[67] 1oYds9] [P1] o1reD “eadyzog l€/ 2] p_Iquv

Table 3.2.: Comparison of related pattern languages

28

3.3. Related Work on Pattern Languages

suzayped uonedyLIdA ()
suzaped uonyerogero) ()

aanonpoad-rodAy swodaq 03 surape (g)
jurxds e Surmp swarqoxd

S9110393eD JO JaqUUINU

surayped uoryedTUNUIWO)) (7) aAnydnistp yym [eap 03 suraneJ (7) i uswwﬁwﬂuﬁwﬁw@wﬁwwg sap03a3e)
suraped juswadeue (1) jurxds e 103 Apear 308 03 surape (1) IS [T tH
surdjjeJ
a1 6 " | 30 :3quny
sox N sox a[ess-agre[
uo Sndoj
SOX SOX ON ase
uo Sndoj
saompoerd jo jas
SOLIEUDDS SULIOYSJJO wojsnd e prmgq o3 djay
uo sndoj rerads ym Apres ysuy 03 wow ued jetp) yuawdopPas(€05
spoyjow o[ide 3ursn swed} TOPUTH 3P SUIES WIS aIeM1JOS [eqO[D) 29 adoog
jo swiajqoad 10J surapeJ d reorS03enad
PIINIIISIP 10] SUId)eJ ur suzaped Teor3o3epa
10§ 93endue] urape
suIayeJ parerdy
‘S9s) umowy
\\mwu:m:wwmcou 9DINO0G /OUDIAJY
Gwﬂmuoemzou “wonn[og
siuedppaed HORDOS 3X03 9943 “WID[qOIJ 9} JO SISATeuy | saInquny
‘Ayiqeorddy ‘Arewrwung docmﬂs dog :hw:mm
“UOTJRATIOIN ‘QureN asmﬁo.ﬂ
‘A108310D oureN
‘SY umowy os|y
‘yuajuy
‘QureN

[$¥] trIsex-1v ‘resney|

[04] 'Te 32 puedYIng

[#5] T 32 1oseuopy

Table 3.3.: Comparison of related pattern languages

29

3. Related Work

[Ee1}UL}0J UOTONPOI] B SUIAIISAI] (€)

[enuajoJ uondnpoi] e Sururejureq (7) - - | sauo8aje)
[enusjoJ uononpoi g e Jurysiqessy (1)
suraned
6 € 4 Jo IaquINN
o o o a[eds-agre[
N N N uo snd>oq
0 s 0 e
N A N uo snd>og
SJUSUIUOIIAUD surea)
: sura)ed wnidg €09
juswrdorenap aremyjos onpoid yuawrdoeAdp areM1Jos 9AIIF
JO UOT}OI[[O0D [[EWS 29 adoog
Sunyean 105 surayed Jo UOTR[OD Sunyean 105 suzayed Jo uonR[OD
areuonyRY
surayeJ paredy “worg
PXPIU0D \ Bnsoy sordurexyg \ neLreA
UORRIOS ‘uonn[o S[PUOREY saynqLiyy
‘s2d104 . 195 ‘uonn|og RV
, S9010) upeg
WSO , S9010
y wa[qoid y
IX3U0D) , WdqOIJ
y S9[qeLreA 1SN /
JuRIU , SWEN
, 1X93U0D)
awreN)
aureN
|12] 1014e] [£] ‘Te 39 31paag [4€] vosLITe]

Table 3.4.: Comparison of related pattern languages based on [74]

30

3.3. Related Work on Pattern Languages

s1aysn[D YT, () apo)) pue 3[doa ()
| soonoderq Sunroddng (¢) 91415 TeuoneziuediQ (g) sor1090ye
sad1oRI] [edTUY], (7) UIMOID) TeawaddlJ () : 9
saomoeI] Moeqpadd (1) juswadeue] 3103[01] (1)
surapeJ
1T 8¢ 76 30 12quInN
(ore2s-93xey Ut orqeordde o[eos-o8re]
ON ON are surayed swos
uo Sndoq
UoT)UaW SIOYINe ng) ON
9 S S e
A A A uo sndog
wning jo soonpoead oqide saSensue] uajed
SJ H & INOJ JO UONDII[[0D B OJUI €05
saompoead 3s9(TeTyUdSSa Sundope Amyssaoons POUIQUIOD are Jeu susaped 13 2doog
3SOW 3} JO UOTIY[0D) | 10§ surajed Jo U030 E:o& eZ1UpS10 JO WO
[9A3] 20UIPIFUOD)
\mmuzg& °d ‘suropeJ pare[ay
Uo SUOTJRLIBA)
neJ pareroy ang UOTSSONSI(|
1Xo3U00 mmw%%m ~wondopy \ .
anjos y uonnog
‘S3010,] SI0JIUL a40f249Y]
, ‘S90104 , soquUBRVy
wa[qoI] Axoy0 S9010/] wroneg
o . ‘Arewruuns Wwa[qoIJ
y UoIS
IXajuo) , *k¥
anyeA ssaursng -
e reader(q Aouspuadag , } J
aureN) K103s 310Yg
uondridsa(g oSew
‘QureN ureN

[9]°T® 32 31paag

|1¢] Astpeuressig

| 1g] wostirey ‘uardo)

Table 3.5.: Comparison of related pattern languages based on [74]

31

3. Related Work

STl (6)

310D Wmna suruueld (g)
o UwE mum (8) K131 3oNpoirg Surdeuely (/)
- mms C;mﬁ S () supednuy (%) 109lo1 e Sursop) (9)
S panqrsid (9) uoryejuasarday Jo surepe () sarrepunog a3eig urdeuey (G)
uorjezrue3iQ 1onpoif () sa110833e)
tottonoid i SSe00x Aymiqrsuodsay jo suzane (7) a3deyg e 3uronuo) (%)
} I - &m (%) POUISIAl JO suxaned (1) 19loxJ e Sunentuy (¢)
u&mmm me 309lo1g e dn Suneig (7)
weans snreA (1) 303lox g e 3unoar((1)
surajeJ
yee 6¥ 81 J0 1qUINN
° ° - dreds-agre|
N N A uo snd>oj
S S9 AJrenre e
A A [renred o SN0
aonoerd juowadeuewr
SO IUNUWIWOD WNIDG soompoerd aide i
309loxd aremyjos 1eqo3 paaoaduur €05
pue o[1de punore jo uoneyusw[dwr renur pue
ySnomny sprom juswadeuew 29 adoog
amjyerdy] ureped jo Apog | suorjeuwriojsuen) o[rde 10§ SUIdNEJ ofo1d Jo ourewzoqiad Supuequy
saouanbasuo))
GOSS&QSE&EH 1X3U0d Sun NSy
amjonng ,
y uonnjog
UOLRARON)
‘Aynqeoriddy 892104 SNqUNY
Ten3ariy PR, ‘SaTOY wieme
g ESO.D WMAD 1X93U0D [enuy ned
A4 \] 0S|V ‘oureN]
SQIOAOI] P
Auop gRuep]
‘aureN

[69] JOTdwnIdg

[€S] TIRYIN

[94] PIEWIEA

Table 3.6.: Comparison of related pattern languages based on [74]

32

4. Identifying Recurring Concerns and
Practices

In the preceding chapters the foundations of this thesis and related work were presented.
The LSADPL, which forms the basis of this work, was explained. The existing work on
concerns in large-scale agile development gives a starting point for identifying further
concerns. This chapter describes the study that is used to identify concerns and pattern
candidates for the scaling of agile methodologies. Sections and first lay out the
methodology that is used to collect the data and describe the organizational setup of the
industry partner. Section[4.3]lists all concerns that are identified in the study and identifies
recurring concerns. Finally, Sections 4.4/ and 4.5| present the identified pattern candidates
(good and bad practices) and map them into a coordination mode categorization after-
wards.

Throughout the following sections, concerns and pattern candidates are addressed using
unique identifiers (IDs). Concern identifiers start with a capital 'C’. Coordination prac-
tice identifiers start with "CO’. Methodology practice identifiers start with "M’. Viewpoint
practice identifiers start with "V’. And anti-pattern candidates start with "AP’".

4.1. Methodology

The data collection to identify recurring concerns and practices incorporates multiple tech-
niques of data gathering [60]. Third degree data was collected using internal documenta-
tion and artifacts of the industry partner organization. This includes the corporate wiki,
Jira and ZenHub boards, workshop or presentation slides, and others. Second degree data
was collected by observing the workflows and meetings of teams within the studied or-
ganizational units. First degree data is the most important part of the data collection for
this study. It was collected by conducting semi-structured interviews with 15 practitioners
from the case organization [60, 80].

The semi-structured interviews followed a frame that is illustrated in Figure Each
interview started with predefined questions about the interviewee’s personal background,
experience with large-scale agile development, and the current role in the team. Then, we
asked the interviewees to identify their three most pressing concerns which they are facing
in their current role, regarding the methodology and coordination of work in the large-
scale agile development setting. For every concern that was mentioned, we asked the
interviewees to describe a solution that they applied in practice to address this concern. In
the third step of the interviews, we showed a list of concerns to the participants that we

33

4. Identifying Recurring Concerns and Practices

Personal
background

Identify & describe
concerns and practices

Identify recurring
concerns and describe
v practices

Figure 4.1.: Visualization of the used interview structure, an adaption of the pyramid prin-
ciple by [60]

already had identified previously. We asked them to select those concerns that they are
also facing and choose any concerns to again describe a solution they applied in practice.

Each interview lasted approximately one hour, was audio-recorded, and was transcribed
afterwards. To reduce the potential for bias introduced by the transcribing researcher, we
handed out the transcript and artifacts that we generated from the interviews to the re-
spective participants for a review. The roles and years of practical experience with scaled
agile development of the interviewees are listed in Table Each interviewee is assigned
an alias which is used in the text to refer to the specific table entry.

We identified six teams from the Munich based product areas of the case organization
as the major sub groups that are available and relevant to this study. They are described in
detail in Section 4.2l We sampled interviewees out of these six teams. Both, the sampling
and the list of concerns, which we presented to participants in the third part of the inter-
views, were subject to the rolling quality of a single-case, embedded study [52]]. This means
that we selected the interviewees on a rolling basis during the study and presented them
a list of concerns that also contained ones mentioned by previous interviewees. To collect
an equal amount of opinions on all identified concerns, during the interview recap session
we asked participants to identify concerns that are relevant to them from a list of concerns
that had been collected after their personal interview took place.

We imported the collected data of all three levels into a qualitative data analysis software
(MAXQDA 2018) to conduct the analysis. The data was coded and analyzed following the
five steps described by Cruzes and Dyba [22]. Significant segments of the transcripts,
protocols, and documentation text were labeled with concept codes in the qualitative data
analysis software [52]. We assigned codes following the integrated approach [22]. This
means, the existing list of concerns from literature served as a start list of provisional codes.
Also, the LSADPL acted as a general accounting scheme [22, 52]. Thus, we categorized the

34

4.1. Methodology

No. Alias Role Experience Team Product Area
1 AC1 Agile Consultant 6-10 years - -
2 D1 Developer 1-2years Team4 B
3 D2 Developer 1-2years Team6 C
4 D3 Developer 6-10years Team3 A
5 M1 Development Manager 3 -5 years -/ Teamb5 B
6 M2 Development Manager 16 - 20 years - A
7 PO1 Product Owner 1-2 years Team4 B
8 PO2 Product Owner 1 -2 years Team?2 A
9 PO3 Product Owner 11 -15years Teaml A
10 SM1 Scrum Master 3 -5 years Team?2 A
11 SM2 Scrum Master 3 - 5 years Teamb B
12 SM3 Scrum Master 1-2years Team1 A
13 SA1 Software Architect 3 -5 years Team1 A
14 SA2 Software Architect 6-10 years Team2 A
15 D4 Developer (Tech Lead) 11-15years Team6 C

Table 4.1.: Overview of the interview participants

codes according to the entities of the LEADPL. In the next step, we consolidated codes
and combined them in cases of overlaps. Finally, we created the artifacts presented in
this thesis based on the coding results. To ensure the objectivity and quality of the data
analysis, the coding was reviewed by a second researcher. Table 4.2|displays an overview
of the used code structure, assigned codes, and identified artifacts.

Code Category # Identified Elements # Codes

Concerns 39 921

Methodology Pattern Can- 9 142

didates

Coordination Pattern Can- 23 123

didates

Viewpoint Pattern Candi- 6 53

dates

Anti-Pattern candidates 4 42

Principle candidates 2 18
Total 1299

Table 4.2.: Overview of the used code structure and number of identified elements

35

4. Identifying Recurring Concerns and Practices

4.2. Case Description

Organization
Product Area A Product Area B Product Area C
PR N emm—m—~ i ameas e mmm——— e
\ \ f \ \ 7’ D
|{ L .{ 1 : 1 |l,_\ L '/ — : i \‘
I i 1y I
: [o I Team 3] | I P :
: Ly 1 ! I ' I 1
1| — ~ 0 : Il o : 1 < : o = - : : ©° a “ X !
|
|| §E | Bl 5! AEIRE LR N |
|l e s e E : C e : el & & |Fle & & I
: I : 1 ! I i :
| T il '
: N : : — : : - : : e i : : e e i P e :
I I 1y 1ii
| ProductA ! | Product B : . |Product C'i ProductD | | Product E |
R 1 Sy \ 77 N 4

Figure 4.2.: The team setup in the case organization as of July 2019

We collected the data in a productive software development environment at a large Ger-
man software vendor. The unit of analysis was one development site, which housed mul-
tiple product areas. We observed three of those product areas during the course of this
study. Therefore, the study can be categorized as single-case embedded [80]. The three
product areas are assigned the aliases “A”, “B”, and “C”. They are segmented based on
the products they focus on. Each product area has a Development Manager and multiple
teams. Figure4.2|shows the team constellation as of July 2019. The observed product areas
of the company did not use any scaling agile framework such as SAFe® or Nexus during
the study. However, interviewees AC1 and SA2 mentioned that there have been attempts
to use SAFe® in other parts of the organization. The observed teams are all structured
according to the Scrum setup [67]], except Team3.

Product Area A: Team1

Team1 has 14 team members, including a full-time Scrum Master and PO, the development
team of 10 people, an affiliated Software Architect, and one dedicated DevOps engineer
from Team3. The Team1 was set up completely from scratch in August 2018. Through-
out 2018, the team grew constantly. Initially, Team1 was developing a solution to make
business objects, which are maintained by several products of the organization, reusable
across the whole product suite. However, the project vision and requirements were not
clear when the team started in August 2018. Therefore, Team1 faced several changes in
project scope. This is clearly reflected in the identified concerns in Section In March
2019, the project of Team1 was restructured completely and was merged into a new, sig-

36

4.2. Case Description

nificantly larger project to develop Product A. Since March 2019, Team]1 is collaborating
with Team?7, which is located in Walldorf, and Team8, which is located in Potsdam. The
new project is not restricted to business objects, but also encompasses several other kinds
of resources. As the teams working on Product A were constantly growing throughout the
course of this study, they decided to implement the Nexus framework starting from end
of July 2019. Due to the limited time scope of this thesis the implementation of the Nexus
framework could not be considered anymore.

Product Area A: Team2

Team?2 has seven team members, including a part-time Scrum Master that is also doing de-
velopment, a full-time PO, a development team of three people (including part-time Scrum
Master), a Technical Writer, an affiliated Software Architect, and a DevOps Engineer from
Team3. Team2 is developing a cloud service for authentication and authorization (Product
B) that will be used within the whole product suite. The Product B is intended to replace
the product-level identity management with suite-level identity management. Team? are
collaborating with people from Team9 in Walldorf. Further, during the course of this study
Team?2 was assisting in development of another project for a period of three months. The
other project was facing capacity problems towards an approaching deadline.

Product Area A: Team3

Team3 has four team members. The team is a dedicated DevOps team that takes care of
helping the teams on Product A and B to create and maintain their continuous integration
and deployment pipelines. Because both products are focused on the cloud, the continu-
ous deployment approach is a central point for the releases. The Team3 does not follow a
strict structuring like the other teams. Instead, it consists of a development lead and three
engineers. They are structured in a dedicated team to enable synergies between the differ-
ent products and to ensure knowledge exchange.

Product Area B: Team5

Product Area B is focused on logging related products. First, Team5 of Product D is dis-
cussed, because Product C by Team4 is building up on this work.

The Team5 has five team members, including three developers, a Scrum Master that is also
doing part-time development, and a PO that is also the Development Manager of Product
Area B. Team5 is developing a log management solution together with one team from Gli-
wice (Poland) and Montreal (Canada) each. The project focuses on retrieval and collection
of logs generated by products of the organization and making these logs searchable and
analyzable.

Product Area B: Team4

Team4 has seven team members, including six developers and one PO. The Team4 does
not have a Scrum Master. Team4 is developing a platform that enables analysis of soft-
ware logs and reaction to events in the logs. Their Product C is building onto the solution

37

4. Identifying Recurring Concerns and Practices

of Product D and adds more advanced features to the product. Even though this setup
of the single Team4 developing Product C does not match the large-scale definition from
Section interviewees were sampled from Team4 because of their close collaboration
and high demand for coordination with the teams of Product D.

Product Area C: Team6

Team6 has twelve team members, including a Scrum Master, a PO, an Enterprise Architect,
a dedicated Quality Assurance member, a Technical Writer, and a development team of
seven people. In total, seven teams distributed across several continents are collaborating
on the development of Product E. Product E is a software that automates the deployment
and operation of other products of the case organization. The teams of Product E are
generally following a Scrum setup. They have implemented a Scrum-of-Scrums meeting
and several other practices like the (CO-9: BUG TRIAGE MEETING| or the [M-4: FOLLOW|

[THE SUN|practice to deal with this large setup.

4.3. Findings on Recurring Concerns

This section contains the results of the first open part of the interviews, where we asked
participants to identify their top three concerns regarding the methodology and coordina-
tion in large-scale agile software development. Most of them identified three concerns and
the following list contains all the named concerns. Further, the list also contains concerns
that have been identified by observation, in meetings, and in archival data. Even though
we explicitly asked for concerns of large-scale agile methodology and coordination, some
participants raised concerns from other categories as well. We decided to document them
anyway to depict a holistic picture of the concerns at the case organization.

¢ C-101: How to keep the team motivated despite frequent, severe changes in requirements?
Even though agile values exhort people to embrace change, in the case organization
there was still a lot of frustration due to frequent changes in project requirements
and scope. Especially in Team1, this concern was relevant for the Scrum Master and
Product Owner because in the development work they faced several serious changes
in requirements. This concern is categorized as a team level concern of ‘Culture &
Mindset’.

e C-102: How to deal with corporate hierarchies and salary structures? Interviewee M1 men-
tioned he observes that “[...] in traditional corporate structures, which are structured
hierarchically, agility reaches its limits.” Even though agile teams are structured
democratically, in the larger organization “[...] often there are limitations at some
point that tell you ‘'we do this differently here’. You just have to go up far enough,
and then there are always some policies or areas where you can’t get ahead.” In-
terviewee SM3 also described, that the hierarchical structure in the case organization

38

4.3. Findings on Recurring Concerns

sometimes intimidates junior people to raise their concerns against senior colleagues.
This concern is categorized as a "Methodology’ concern on all levels.

C-103: How to deal with frustration by change despite using agile methods? Several in-
terviewees described, that even though the case organization is heavily engaging in
running projects using agile methodologies, people in the teams still get frustrated by
change in requirements and scope of projects. SA1 described, that Scrum was taken
as the granted way to be more agile by many people. But dealing with the actual
change still was a problem for them. Interviewee SA2 linked this concern to evolve
out of C-6: How to deal with incorrect practices of agile development?. This concern is
categorized as a "Culture & Mindset’ concern at team level.

C-104: How to deal with highly ambiguous tasks in agile methods? This concern describes
problems with ambiguous tasks, such as software architecture, in combination with
agile methods. SA1 explained “[...] that’s so difficult — because you don’t know how
to measure or estimate those things — to put it in a Scrum setup.” Interviewee PO2
added that “[...] if those requirements are not very clear, it becomes a bit difficult to
actually prioritize any other feature above those tasks.” SA1 mentioned for which
tasks this concern is relevant: “[...] when you are looking into “how” and “what”,
then it’s so difficult to create a user story.” This concern is categorized as a team level
concern of 'Project Management'.

C-105: How to deal with requirements coming from different sides? Interviewee SM1 de-
scribed, that it is “[...] a problem in big organizations that you have requirements
coming from left and right, from any random person at any random time.” The
problem of this concern is the multitude of stakeholders and communication chan-
nels, from which requirements can reach the PO and the development team. This
concern is categorized as a team level concern of ‘Communication & Coordination’.

C-106: How to deal with lack of time to work with the Product Owner to organize the back-
log? This is a concern for Scrum Masters, that describes coordination problems re-
garding collaboration with the PO. Because the PO often is very busy, and is working
between the two sides of business and development, it was expressed by Scrum Mas-
ters that they struggle to find time slots to organize the backlog together with the PO.
This concern was enforced by the fact that some Scrum Masters were doing this role
only part-time. This concern is categorized as a team level concern of "Communica-
tion & Coordination’.

C-107: How to deal with slow reactions of other teams or people in case of dependencies?
In case of unforeseen dependencies during a sprint, it is a concern for several inter-
viewees that other teams or individuals in the organization often take a long time to
reply to inquiries. In the meantime the work in the ongoing sprint is often blocked.
This concern is categorized as an organization level concern of ‘Communication &
Coordination’.

39

4. Identifying Recurring Concerns and Practices

C-108: How to deal with different learning speeds of team members? Scrum Master SM1
expressed the concern, that due to the high pressure regarding approaching dead-
lines, the team was facing issues at dealing with different working and learning
speeds of individual developers. It is hard for the Scrum Master to balance the desire
of “slower” people to learn new technologies, and the need of the team to finish crit-
ical tasks in time and thus assign them to already experienced team members. SM1
found it difficult to ensure a certain balance in this case. This concern is categorized
as a team level concern of "Methodology’.

C-109: How to ensure that quality requirements are prioritized in development work? In-
terviewee PO2 struggled with prioritization of quality requirements. Especially, be-
cause the stakeholders of their project were only focusing on features being finished
as soon as possible. Due to this, the team had built up a sizable technical debt, that
cost a lot of time to fix and that lowered the members” motivation. This concern is
categorized as a ‘Software Architecture’ concern at program level.

C-110: How to deal with increasing complexity of systems based on micro-service architec-
ture? Interviewee D1 mentioned the concern, that, due to the distribution of devel-
opment across many projects and teams, the emerging micro-service landscape is
increasingly complex to handle. “Our main focus here is on coordinating the dis-
tributed systems”, said D1. The micro-service architecture requires additional coor-
dination between teams and integration between components. This concern is cate-
gorized as an organization level concern of ‘Software Architecture’.

C-111: How to keep the team focused on the larger context and project goals? Interviewee
D1 described situations where the development team Team4 had trouble focusing on
the larger goal of their project. The team was very busy doing patches and security
related tasks, and the usage of the Kanban methodology in this situation led to them
thinking only in "tickets’. The switch to Scrum improved on this, but did not resolve
the concern completely. This concern is categorized as a "Methodology’ concern at
the team level.

C-112: How to avoid developing solutions multiple times in the organization? The case
organization had a problem with redundant development work. D1 mentioned that
“[...] it’s a scaling problem with large companies, that you just don’t know what al-
ready exists.” Therefore, there have been cases of solutions being developed, that
already existed elsewhere in the organization. This concern is categorized as an or-
ganization level concern of ‘Enterprise Architecture’.

C-113: How to ensure acceptance of Product Owner and Scrum Master by the team? The
manager M2 described that in the past he faced issues with the acceptance of the
Product Owner and Scrum Master by the development team. The reason for this was
that, though both of them were sophisticated agile practitioners, their missing tech-
nical expertise in the area of the project led to disrespectful behaviour by members

40

4.3. Findings on Recurring Concerns

of the development team. This concern is categorized as a "Methodology” concern at
the team level.

C-114: How to deal with urgent bugfix requests? Interviewees M2 and D2 described
situations, in which the development teams had to react very quickly to urgent issue
reports. Both interviewees described, that based on contracts their teams had to
react to reported bugs in a certain period of time. This lead to the concern of how
to arrange this with the general Scrum sprint setup of their teams. This concern is
categorized as a program level concern of "Methodology’.

C-115: How to take decisions in multiple-team setups? In multiple-team setups, there
has to be one person that can take decisions in deadlock situations. Interviewee M2
described this concern. M2 added, that neither one of the POs nor the Product Man-
ager are the right person to take such decisions. The concern of M2 was to whether
make those decisions personally, or to appoint someone to be able to take decisions
that affect multiple teams. This concern is categorized as a program level concern of
"Methodology’.

C-116: How to deal with an existing development team before requirements are existing? In
large organizations, teams often already exist before their project is actually started.
This can be due to a previous project of the team being finished, or because staffing
has been started before the project is set up. In case of Teaml the latter was the
case. The team was created and set up, before the project they were supposed to
work on was completely defined. The PO3 mentioned the concern, that this lead to
incomplete requirements and changing scope of the project. Ultimately, the initial
project of Team1 was even merged into a much bigger project, because the initial
project definition was not sophisticated enough. This concern is categorized as a
team level concern of "‘Communication & Coordination’.

C-117: How to deal with demo driven development? This concern was raised by inter-
viewee PO3. He mentioned that due to a demo that has been scheduled in a very
early stage of the project of Team1, the development focused only on relevant topics
for this demo. This led to a neglection of important project-specific topics, such as
a thorough software architecture. The demo was scheduled by a board member, so
the team could not help themselves and had to develop demo driven. This concern
is categorized as a program level concern of ‘Communication & Coordination’.

C-118: How to deal with resistance to introduction of agile methods? This concern de-
scribes the resistance of team members to the introduction of agile methodologies.
Interviewee PO1 raised this concern in the specific context of a research-heavy project,
where team members objected the applicability of agile methodologies to their re-
search work. This concern is categorized as a team level concern of ‘Culture & Mind-
set’.

41

4. Identifying Recurring Concerns and Practices

e C-119: How to deal with issues that interrupt the sprint? This concern describes the

problem of handling tasks, that are coming in during a running sprint, and require an
action by the development team. Interviewee PO1 said: “One of the main concerns
with everything in general development is unexpected tasks or things that were not
planned for the sprint.” Even though in Scrum the Scrum Master should shield the
team from outside influence during a sprint, this cannot always be achieved. E.g.,
for tasks that require immediate action of a technical person, like a developer. This
concern is categorized as a team level concern of ‘"Methodology’.

C-120: How to coordinate work across multiple time zones? Interviewee SM2 mentioned
that “[...] the times and working across time zones is the biggest challenge in working
in this distributed team.” The main reason for working across multiple time zones
being a concern is the short overlap times between the time zones to coordinate all
the work. In the case organization the working time overlap between the teams in
Montreal and those in Munich was especially short, with only two hours each day.
Further, interviewee AC1 added to this concern that this “[...] has an impact on the
work live balance”. It forces teams “[...] to meet in strange hours that are not really
typical for their time zone.” This concern is categorized as a team and program level
concern of both ‘Communication & Coordination’.

C-121: How to deal with not being able to physically sit together in distributed teams?
Teams that are co-located can sit together physically in front of their whiteboards to
have meetings such as the Daily Scrum and Sprint Plannings. They can concentrate
on the work they are doing. In contrast, distributed teams cannot sit together. They
have to rely on technology to communicate and replicate the board they are using in
the meeting. Their way of holding meetings is restricted by the possibilities of the
technology. This concern is also linked to C-138: How to deal with distractions in online
meetings?. This concern is categorized as a team level concern of "‘Communication &
Coordination’.

C-122: How to deal with unexpected dependencies? This concern describes situations,
where teams discover unexpected or unforeseeable dependencies during a running
sprint. In a particular case described by interviewee SM2, a developer was absent
for a period of time. Other team members continued their work and reached a point,
where they could not progress anymore without the task of the absent person being
done. The concern can appear both inside teams and between teams. This concern is
categorized as a concern of ‘Communication & Coordination” on all scaling levels.

C-123: How to deal with sub grouping due to geographical distribution? Interviewee SM2
described that “[...] people group into small sub-teams at the different locations,
and there is a preference to whatever your team mates say [...]”. This makes it hard
to reach location overarching agreements on controversial topics throughout teams.
This concern is categorized as a team level concern of ‘Geographical Distribution’.

42

4.3. Findings on Recurring Concerns

¢ C-124: How to implement scaled agile methodologies? The participant AC1 mentioned
being concerned with actually applying agile values and methodologies in larger
scale. Especially, the continuous improvement of work processes and running retro-
spectives on larger scale is a concern to AC1. Inter-team coordination and commu-
nication processes on higher levels are often not as straight forward as on team level
and are therefore hard to grasp and improve by team retrospectives. This concern is
categorized as a ‘Methodology’ concern across all scaling levels.

¢ C-125: How to plan work and track progress? While agile frameworks provide methods
to plan work in individual teams, they do not provide guidance regarding multiple
teams. In the case organization, the concern was raised on how to actually plan
work across multiple teams and how to check whether the project is progressing in
the right direction. This concern is categorized as a "Methodology” concern on all
scaling levels.

* C-126: How to deal with lack of social binding between teams due to geographical distribu-
tion? In large, distributed teams or in projects with teams distributed across several
locations, participants face the concern that members do not feel a social binding or
a warm atmosphere between others working in different locations. The reason for
this are missing face to face communication, and the lack of any social interaction
besides work whatsoever. Interviewee D4 described that there is a clear lack of the
feeling among people of Product E, that they belong to the same team. This con-
cern is categorized as a ‘Geographical Distribution” concern on team, program and
organizational levels.

e C-127: How to meet release dates? In the case organization projects are often started
before their purpose and requirements have been finally decided. This makes it
hard to actually define and meet deadlines for the project. This is due to the rea-
son, that the case organization is mostly developing standard software. There is no
direct customer driving or pressurizing the development of the product. This con-
cern is loosely linked to C-116: How to deal with an existing development team before
requirements are existing?. This concern is categorized as a program level concern of
"Methodology’.

¢ C-128: How to introduce agile practices sustainable? Development Managers expressed
that while the introduction of agile methodologies was not that big of a problem
in their product areas, ensuring that they are adopted sustainable and are applied
consistently is a concern to them. They observed that people tend to fall back into
old behavior over time. It is a concern to them, to ensure correct application of agile
methods over a longer period of time. This concern is categorized as a program level
concern of ‘Methodology’.

¢ C-129: How to avoid wasting time on technical exploration? Interviewee M1 faced the
concern, that in the case organization time was often wasted on unnecessary tech-

43

4. Identifying Recurring Concerns and Practices

nical explorations, like proof of concepts and spikes. One reason for this was the
missing clear definition of the Software Architect role, and how this role interacts
with the development team. This concern is categorized as a ’'Methodology’ concern
at team level.

C-130: How to deal with people that stick with their way of doing things? People tend
to stick with work processes and tools that they have been using in the past. Con-
sequently, it is often a concern to introduce new processes or new tools for certain
processes. Interviewee SA2 mentioned the example of documentation. People in the
case organization are used to document and search for documentation on the cor-
porate wiki. For some projects, according to SA2, this might not be the best way
to maintain the documentation. However, SA2 expressed that it is very hard to get
people to take a different approach, even if it might be better suited. This concern is
categorized as a ‘Culture & Mindset” concern at team level.

C-131: How to deal with political decisions? Several interviewees described situations,
where discussions and decisions turned political and were devoid of a rational basis.
Interviewee SA2 said: “It’s quite often that some things are simply not done because
someone doesn’t like someone else. That’s the politics.” Further, interviewee PO1
connected this concern to higher hierarchical levels: “Usually it is not like my solu-
tion is technically better [...], usually the managers are fighting for their solution. I
believe this is on higher levels and it is related to big companies.” This concern is
categorized as a ‘Culture & Mindset’ concern on all scaling levels.

C-132: How to increase project visibility in the organization? Because the case organi-
zation is large and distributed, not everyone can be aware of which projects and
products are currently being developed. Interviewee M1 was struggling with incor-
porating internal marketing effort, in order to make other members of the organi-
zation aware of the product they were developing. This concern is categorized as a
‘Communication & Coordination” concern on program level.

C-133: How to deal with increased demand of status updates in agile methods? Interviewee
SA1 mentioned that, especially in his architecture work, the Daily Scrum meeting
is pressuring people to come up with artificial status updates. In particular, if the
work takes longer than expected. This reduces the value of these meetings and is
also linked to C-134: How to deal with inefficient coordination meetings?. This concern is
categorized as a ’'Methodology’ concern at the team level.

C-134: How to deal with inefficient coordination meetings? This concern was raised by
interviewee SA1: “Like I said, I strongly believe that most of the meetings are ineffi-
cient.” This is on the one hand due to C-133: How to deal with increased demand of status
updates in agile methods?, and on the other hand because of C-138: How to deal with
distractions in online meetings?. Most of the meetings are not relevant to all of their
participants. Thus, people get distracted and the value of the meetings decreases

44

4.3. Findings on Recurring Concerns

for all attendees. This concern is categorized as a ‘Communication & Coordination’
concern at the team level.

C-135: How to align teams from independent projects to integrate their products? The case
organization did acquire over 25 other companies during the past ten years. This
acquisitions come with additional efforts of integrating their products with the exist-
ing product line-up of the case organization. Specifically, Team1 had to integrate the
product of a company, that was acquired in 2017, into the project they were working
on during the time of this study. This concern is categorized as a enterprise level
concern of ‘Communication & Coordination’.

C-136: How to avoid building up technical debt due to fast iteration? This concern was
described by participants from the teams Team2 and Team4. Because of pressure
from the stakeholders and too short iteration cycles, both teams built up technical
debt in the past. It cost them considerable time and effort to fix it afterwards. This
concern is categorized as a ‘Methodology’ concern at the team level.

C-137: How to balance shielding of the developers and giving them enough project context?
This is a PO concern described by PO2 and PO3. It is the responsibility of the PO to
balance the amount of information that passes from the business side to the develop-
ment side, and vice versa. It is further also the responsibility of the PO to recognize
which concerns from which stakeholders are actually relevant to the project. This is
linked to C-105: How to deal with requirements coming from different sides?. However,
also interviewee D1 raised this concern. For developers, the missing information that
the PO “filtered” out can often lead to a loss of context. It is therefore also a concern
for developers to ensure that they get enough contextual information for their work.
This concern is categorized as a ’'Methodology’ concern at the team level.

C-138: How to deal with distractions in online meetings? Additionally to C-134: How
to deal with inefficient coordination meetings?, people tend to get distracted in online
meetings even more than in face-to-face meetings. Interviewee SM2 mentioned that
“[...] you can feel that they [do] not really completely participate in the meeting,
because you don’t have this under control, right.” Interviewee PO1 also added a
technical dimension to it: “[...] if you do that on a Skype-Call, like, it is normal
that people get disconnected.” This concern is categorized as a ‘Communication &
Coordination” concern at the team level.

C-139: How to deal with lacking knowledge of another team’s activities? Due to the dis-
tribution of teams, and also due to the big number of teams of Product Area C, the
concern occurred that individuals or even whole teams did not exactly know what
their peer teams were actually working on at the moment. This has led to coordina-
tion problems and even to unnecessary efforts and wrong development work. This
concern is categorized as a ‘Communication & Coordination” concern at team level.

45

4. Identifying Recurring Concerns and Practices

In sum 39 concerns have been identified during the interviews and observations at the
case organization. 13 identified concerns are categorized as ‘Communication & Coordina-
tion” and 15 identified concerns are categorized as "Methodology” concerns. Besides those
two categories on which this thesis focuses, we also identified some concerns from other
categories: 5 concerns of category ‘Culture & Mindset’, 1 concern of category "Project Man-
agement’, 2 concerns of category ‘Software Architecture’, 1 concern of category "Enterprise
Architecture’, and 2 concerns of category ‘Geographical Distribution’.

Removing and Merging Duplicated Concerns

The interview participants were asked to identify their most pressing concerns before they
were shown the list of already identified concerns. Therefore, some duplicates emerged
throughout the course of the study. The duplicates will be merged with existing concerns
in this section. We will also show justification why (allegedly) similar concerns have not
been merged. In this section a citation is placed behind mentions of concerns that originate
from literature to make the process better understandable.

First, the concerns C-101: How to keep the team motivated despite frequent, severe changes
in requirements? and C-103: How to deal with frustration by change despite using agile meth-
ods? are related, as they both cover the frustration and loss of motivation that results out
of drastic changes in a running project. Therefore, C-103 is removed and all links to it
are mapped to C-101. However, the concerns are not merged with the similar concern
C-7: How to deal with doubts in people about changes? [75], because C-7 refers to the doubts
regarding incoming new changes and C-101 refers to the frustration that emerges after
the changes have been accepted for implementation. The concern C-104: How to deal with
highly ambiguous tasks in agile methods? is merged into the concern C-73: How to deal with
decreased predictability? [75], because they both describe the ambiguity and the resulting
problems in dealing with the planning and prediction of work effort. Next, the concern C-
107: How to deal with slow reactions of other teams or people in case of dependencies? is similar to
the concern C-21: How to manage dependencies to other existing environments? [75]. However,
the concerns are not merged, because C-21 refers to dependencies from the architectural
perspective, but C-107 refers to any kind of dependencies that might occur from the devel-
opment team’s perspective such as requesting knowledge or unavailable colleagues. The
concerns C-109: How to ensure that quality requirements are prioritized in development work?
and C-8: How to ensure that non-functional requirements are considered by the development team?
[75] are merged, since quality requirements are non-functional requirements [17]. All ref-
erences to C-109 are mapped to C-8. C-112: How to avoid developing solutions multiple times
in the organization? and C-34: How to ensure the reuse of enterprise assets? [75] are merged,
because they both describe the same concern from different perspectives. The first one de-
scribes to avoid developing something that already exists and the second one describes to
make sure that something that already exists is reused. Therefore, all references to C-112
are mapped to C-34. The concerns C-131: How to deal with political decisions? and C-65: How
to deal with office politics? [75] are merged, since C-131 is just a rephrasing of C-65. Hence,

46

4.3. Findings on Recurring Concerns

Culture & Mindset B Methodology
m Team Level m Program Level o
m Organization Level m Enterprise Level ® Communication & = Software
ganz v P v Coordination Architecture
(a) Scaling levels (b) Categories

Figure 4.3.: Overview of the scaling levels and categories of the identified concerns

all references to C-131 are mapped to C-65. C-119: How to deal with issues that interrupt the
sprint? and C-41: How to deal with unplanned requirements and risks? are similar but are
not merged, because C-119 also covers unplanned issues that are neither requirements nor
risks (e.g., organizational issues). The concern C-118: How to deal with resistance to introduc-
tion of agile methods? is merged with the concern C-46: How to deal with closed mindedness?
, since the resistance to introduction of agile methods is related to closed mindedness
of individuals. All references to C-118 are mapped to C-46. Additionally, references to
C-130: How to deal with people that stick with their way of doing things? are also merged and
mapped to C-46. The concerns C-126: How to deal with lack of social binding between teams
due to geographical distribution? and C-123: How to deal with sub grouping due to geographical
distribution? describe the same phenomenon as C-32: How to deal with lacking team cohesion
at different locations? [75]. Therefore, the three concerns are merged and all references to
C-126 or C-123 are mapped to C-32. The concern C-114: How to deal with urgent bugfix re-
quests? is already mentioned in as C-95: How to rapidly deliver a necessary patch?. All
references to C-114 are mapped to C-95. C-114 is removed. Finally, the concern C-139:
How to deal with lacking knowledge of another team’s activities? already exists in and was
assigned the identifier C-83. Thus, C-139 is removed and all references to it are mapped to
C-83.

After removing and merging all duplicates, 28 new concerns have been identified in this
study at the industry partner. 12 of them are categorized as ‘Communication & Coordi-
nation’, and 14 are categorized as "Methodology’. Figure [£.3|gives an overview about the
scaling levels and categories of the newly identified concerns after the merging of dupli-
cates. The absolute numbers shown in Figure[4.3aare higher than 28 because five concerns
applied to more than one scaling level.

47

4. Identifying Recurring Concerns and Practices

Identification of Recurring Concerns

In the last part of the interviews, we presented the list of already identified concerns to the
participants. This list contained all concerns from previous interviews as well as concerns
identified in literature. We asked them to identify those concerns on the list that they are
also facing in their work in their current role. For each of the concerns on this list, the
following Tables and 4.5[show how many of the practitioners stated that they are
also having the respective concern in their work. The percentage values are all calculated
based on the number of 15 interviews.

Figure 4.4/ shows all interviewed stakeholder-categories (Developer (Dev), Scrum Mas-
ter (SM), Product Owner (PO), Development Manager (DM), and Agile Consultant(AC))
and all newly identified concerns after the merge and removal of duplicates. For each
concern a connection to a stakeholder-category is drawn if at least half of the intervie-
wees of this stakeholder-category identified this concern as being relevant to them. The
rule of three could not be applied meaningfully in this case because only the Developer
stakeholder-category had more than three participants in the conducted interview series.
We find that while many of the identified concerns are relevant to multiple stakeholder-
categories, the observed and interviewed practitioners did not actively apply practices
against all their relevant concerns. This indicates that although a concern is relevant to a
stakeholder-category, they do not necessarily act against it. The formal definition of the
LSADPL allows for multiple stakeholders having the same concern [74]. However, for fu-
ture work it might be useful to differentiate between relevant concerns for a stakeholder
and concerns that are actually actively addressed by the stakeholder. Additionally, in Figure
the concerns that have been identified as being relevant by three or more participants
from different teams are outlined with a black border. The figure shows that besides con-
cerns C-117 and C-129 all newly identified concerns are relevant for three or more of the
six teams.

S V) ® o] ©

OO0O0OOOOOOOHOOOOOOOOHOOOOOOO

Figure 4.4.: Visualization of which concerns are relevant to which stakeholder-category

48

4.3. Findings on Recurring Concerns

ID Name Category Source # Percentage
C-1 How to coordinate multiple agile teams that work ~Communication [75] 10 67%
on the same product? & Coordination
C-6 How to deal with incorrect practices of agile de- Methodology [75] 7 47%
velopment?
C-16 How to establish self-organization? Communication [75] 5 33%
& Coordination
C-20 How to facilitate communication between agile ~Communication [75] 2 13%
teams and other teams using traditional practices? & Coordination
C-44 How to deal with communication gaps with stake- ~Communication [75] 11 73%
holders? & Coordination
C-49 How to deal with increased efforts by establishing ~Communication [75] 7 47%
inter-team communication? & Coordination
C-59 How to establish a common understanding of ag- Methodology [75] 11 73%
ile thinking and practices?
C-63 How to explain requirements to stakeholders? Communication [75] 5 33%
& Coordination
C-75 How to form and manage autonomous teams? Communication [75] 7 47%
& Coordination
C-78 How to build an effective coaching model? Methodology [75] 3 20%
C-79 How to synchronize sprints in the large-scale agile =~ Communication [175] 5 33%
development program? & Coordination
C-80 How to deal with a competing concept deadlock? =~ Communication [62] 8 53%
& Coordination
C-81 How to deal with missing communication of de- Communication [62] 5 33%
commitment? & Coordination
C-82 How to deal with unclear mutual expectations? Communication [62] 6 40%
& Coordination
C-83 How to deal with lacking knowledge of another ~Communication [62] 10 67%
team’s activities? & Coordination
C-84 How to deal with unknown dependencies be- Communication [62] 9 60%
tween teams? & Coordination
C-85 How to deal with increase in geographic disper- Communication [62] 5 33%
sion? & Coordination
C-86 How to deal with corruption of a shared codebase? Methodology [62] 2 13%
C-87 How to deal with a work item spanning across ~Communication [62] 5 33%
teams? & Coordination
C-88 How to deal with unclear work items? Communication [62] 9 60%
& Coordination
C-89 How to deal with unclear usage of a new develop- Communication [62] 5 33%
ment framework? & Coordination
C-90 How to deal with major testing failures of new fea- Communication [62] 5 33%

ture?

& Coordination

Table 4.3.: List of occurrences of concerns from the last part of the interview, absolute and

relative numbers (based on 15 interviews) shown in table

49

4. Identifying Recurring Concerns and Practices

ID Name Category Source # Percentage
C91 How to deal with new cross-team feature originat- Communication [62] 2 13%
ing from one team? & Coordination
C-92 How to deal with priority conflict within takt? Communication [62] 6 40%
& Coordination
C-93 How to deal with assumption mismatch? Communication [62] 8 53%
& Coordination
C-94 How to deal with late delivery of needed function- Communication [62] 5 33%
ality? & Coordination
C-95 How to rapidly deliver a necessary patch? Methodology [62] 40%
C-96 How to deal with unresolved prioritization of a ~Communication [62] 40%
topic? & Coordination
c-97 How to deal with a cross-team item facing asym- Communication [62] 5 33%
metric team knowledge? & Coordination
C-98 How to deal with recognition of a reuse possibil- Communication [62] 6 40%
ity? & Coordination
C-99 How to deal with discovery of redundancies? Communication [62] 9 60%
& Coordination
C-100 How to deal with division of knowledge within Knowledge Man- [10] 9 60%
and between teams? agement
C-101 How to keep the team motivated despite frequent, Culture & Mind- new 13 87%
severe changes in requirements? set
C-102 How to deal with corporate hierarchies and salary =~ Methodology new 7 47%
structures?
C-105 How to deal with requirements coming from dif- Communication new 13 87%
ferent sides? & Coordination
C-106 How to deal with lack of time to work with the Communication new 6 40%
Product Owner to organize the backlog? & Coordination
C-107 How to deal with slow reactions of other teams or ~Communication new 10 67%
people in case of dependencies? & Coordination
C-108 How to deal with different learning speeds of team Methodology new 4 27%
members?
C-110 How to deal with increasing complexity of sys- Software Archi- new 5 33%
tems based on micro-service architecture? tecture
C-111 How to keep the team focused on the larger con- Methodology new 11 73%
text and project goals?
C-113 How to ensure acceptance of Product Owner and Methodology new 6 40%
Scrum Master by the team?
C-115 How to take decisions in multiple-team setups? Methodology new 9 60%
C-116 How to deal with an existing development team Communication new 7 47%
before requirements are existing? & Coordination
C-117 How to deal with demo driven development? Communication new 3 20%

Table 4.4.: List of occurrences of concerns (Table 4.3 continued)

& Coordination

50

4.3. Findings on Recurring Concerns

ID Name Category Source # Percentage
C-119 How to deal with issues that interrupt the sprint? ~ Methodology new 47%
C-120 How to coordinate work across multiple time Communication new 53%
zones? & Coordination
C-121 How to deal with not being able to physically sit Communication new 9 60%
together in distributed teams? & Coordination
C-122 How to deal with unexpected dependencies? Communication new 7 47%
& Coordination
C-124 How to implement scaled agile methodologies? Methodology new 7 47%
C-125 How to plan work and track progress? Methodology new 6 40%
C-127 How to meet release dates? Methodology new 7 47%
C-128 How to introduce agile practices sustainable? Methodology new 4 27%
C-129 How to avoid wasting time on technical explo- Methodology new 3 20%
ration?
C-132 How to increase project visibility in the organiza- Communication new 6 40%
tion? & Coordination
C-133 How to deal with increased demand of status up- Methodology new 7 47%
dates in agile methods?
C-134 How to deal with inefficient coordination meet- Communication new 10 67%
ings? & Coordination
C-135 How to align teams from independent projects to Communication new 8 53%
integrate their products? & Coordination
C-136 How to avoid building up technical debt due to Methodology new 8 53%
fast iteration?
C-137 How to balance shielding of the developers and Methodology new 7 47%
giving them enough project context?
C-138 How to deal with distractions in online meetings? =~ Communication new 8 53%
& Coordination
C-140 How to deal with external developers? Communication [35] 6 40%
& Coordination
C-141 How to coordinate multi-vendor teams? Communication [35] 5 33%
& Coordination
C-142 How to deal with decisions on higher levels reach- ~Communication [35] 12 80%
ing lower levels? & Coordination
C-143 How to deal with missing understanding of roles? =~ Methodology [35] 7 47%
C-144 How to deal with increased number of coordina- Communication [35] 7 47%

tion meetings?

Table 4.5.: List of occurrences of concerns (Table 4.4|continued)

& Coordination

51

4. Identifying Recurring Concerns and Practices

We created a table of all newly identified concerns after the merge and removal of du-
plicates, including their description, categorization, scaling level, and interview of origin.

It can be found in Appendix

4.4. Findings on Good and Bad Practices

During the five months period of this study we observed and identified 23 coordination
pattern candidates, 9 methodology pattern candidates, 6 viewpoint pattern candidates, 4
anti-pattern candidates, and 2 principle candidates. In sum we documented 42 pattern
candidates. The observed principle and pattern candidates are:

ICO-1: JOINT DAILY SCRUM MEETING|

[CO-2;: REFINEMENT MEETING| M-2: MIXED SPRINTI
[CO-3: DEVCORNERI [M-3: ASSIGNING RIGHTS]
GROUP [M-5: SHIPCAPTAIN|
[CO-5: PROJECT DEBRIEFING]| [M-6: SPRINT ZERO|

[CO-6: REPRESENTATIVE EXCHANGEI
|CO-7: PROJECT STATUS PROTOCOL]
[CO-8: AREA RETROSPECTIVE

[CEADY [V-3: MILESTONE PLANNING BOARD]
[CO-14: LUNCH TAIK] V-6: PERSONA
|£:Q-18; AD ngg £:g2MM[2NI§ ATIQNI [CET]

|P-1: PREREQUISITES TO FORM AU- |

(TONOMOUS [EAMS|
[P-2: SPREAD KNOWLEDGE|

Table 4.6.: Overview of all identified principle and pattern candidates

52

4.4. Findings on Good and Bad Practices

(b) Viewpoint-Pattern candidates

(a) Anti-Pattern candidates

(c) Coordination-Pattern candidates

(d) Methodology-Pattern candidates

Figure 4.5.: Visualization of which concerns are addressed by the identified practices of
each category

53

4. Identifying Recurring Concerns and Practices

A complete documentation of all identified pattern candidates, including all their im-
portant attributes, can be found in the Appendix [C] Figure |4.5 shows which concerns are
addressed by the identified good and bad practices. The figure has been split on prac-
tice category to make it easier to track connections. Figure |4.6/shows the practices that
have been mentioned and applied by each team. Additionally to the teams, Figure
also shows a row for the interviewee AC1. This is because AC1 cannot be linked to one
or more teams but is working with all the teams on a need basis. AC1 mentioned some
practices that we could not observe at the six teams during the study. Those are the pattern
candidates that are only linked to AC1 in Figure

Following, this part of the thesis presents and discusses five pattern candidates in more
detail. The selection was based on frequency of observation. The selected practices where
among the most often used ones in their categories (and are not Scrum meetings or office
wide practices).

54

4.4. Findings on Good and Bad Practices

7

CO-2
CO-4
CO-5
Co-
Co-
CO-8
C0-9
Co-21
CcO-22
C0-23

- oy ©° S|l=|lalo|lx|lw]|o|l |||
1 : il Bl Bl Bodl Bl Bl Bl Bl Bl Bl B
8 8 o|lololololololo]lelofo
QIO OO OO O] Q| Q| ©
o

XXX X X XXX X X X X X X X

X

XK X K X K X K X K X

T T T T I B T < A e

> XXX X X X X X X X X

XX XXX X X X X X X X X

> XX X X X X X X KK K K K XK X
> >

X

o B I A B B o e B B B B R R B I A A P A Bl B
==l =2=l=2222]| 25| 5|52 |55 22| 22| &~

> XX =< X XXX X X >

X

X
X
X
X
X
X
X

X
X
X
X
X
X

> > X

X

Figure 4.6.: Overview of which practices were applied by which teams

55

4. Identifying Recurring Concerns and Practices

4.4.1. Follow the Sun

Pattern Overview

ID M-4

Name FOLLOW THE SUN

Alias Dispatcher

Summary To deal with urgent bug fix requests and customer issues, the Fol-

low the Sun practice helps to guarantee a certain reaction time. The
distribution of the teams across multiple time zones, together with
the role of a "Dispatcher’, is leveraged to have 24 /7 availability for
urgent issues.

Example

The initial version of Product E of the case organization has been released half a year ago.
Since then, the live running installations of the product have significantly increased. This
led to a high inflow of bug reports and urgent customer issues. The company is obliged by
contract to react to reported issues in less then two hours. To keep up with this, the project
teams set up a 'Dispatcher’ role and have a rotating on-call team in each time zone.

Context
The company has to react to issue reports in a given time frame. The number of incoming
issues and reports is high. Teams are distributed across multiple time zones.

Problem

C-20: How to facilitate communication between agile teams and other teams using traditional prac-
tices?

C-95: How to rapidly deliver a necessary patch?

C-120: How to coordinate work across multiple time zones?

Forces

¢ Customers can report issues at any given time, all around the globe. The company
needs to make sure to be on call all day.

* The protective setup of Scrum and other agile methods during a sprint makes it hard
to address urgent issues during a running sprint.

Solution

To achieve very quick reaction times to urgent bug fix requests, set up a ‘24/7 Team’. This
team is distributed across different time-zones, in such a way that 24/7 coverage is en-
sured by always having one active team. Create a ‘Dispatcher” role that takes bugs and
reported issues and directly assigns them to development teams or developers — even in-
side a running sprint. Each time-zone team has one Dispatcher that is responsible for six

56

4.4. Findings on Good and Bad Practices

hours a day, so 24/7 team availability is achieved by rotation. The Dispatcher has access
to the bug database / error tracking system. The Dispatcher has the right to interfere the
work of the Scrum development teams and can assign tasks even inside a running sprint.
If necessary, the Dispatcher can also release code bypassing the normal review procedure.
During the last two hours of the workday, the Dispatcher ensures that all currently run-
ning work is handed over to the following Dispatcher and 24 /7 team members in the next
time zone.

Consequences
Benefits:

¢ The reaction time to urgent requests is guaranteed to be low around the clock.
¢ The normal Scrum development setup can continue in parallel without changes.

Liabilities:

¢ The Scrum sprints and meeting cycle can be disturbed.

See Also

¢ This practice can be applied together with|V-2: TASK DEPENDENCY MAPPING|to vi-
sualize the necessary handovers across time zones.

Other Standards

¢ A similar pattern is documented in the pattern catalogue by [44] and in [16].

4.4.2. Background on Follow the Sun Practice

The Follow the Sun practice was discussed in the interview with participant M2 under the
name 'Dispatcher’. This name is used as an alias in the documentation. The interviewee
D2 described that the Follow the Sun practice was actively being used in their project to
deal with urgent issue reports and approaching deadlines. When talking about the con-
cern C-120: How to coordinate work across multiple time zones?, interviewee AC1 mentioned
that one of the few benefits of distributing teams across multiple time zones was being
able to use the Follow the Sun practice. The Follow the Sun practice leverages the fact
that due to the distribution across different time zones, the effectively used working hours
around the day can be increased. This is achieved by doing handovers and work transfers
between teams in the short time zone overlaps. It allows to be working and to be on call
for issues up to 24 hours each day, if enough time zones are involved.

In the Follow the Sun practice the role of the 'Dispatcher” is important. Interviewee M2
described the Dispatcher role in detail. Participant D2 described a similar role being filled
by Product Owners in their project. Essentially, the Dispatcher takes care of receiving in-
coming issues and relaying them to the teams in the currently available time zone. Thus,
the role has to follow the sun and is assigned to one person in each time zone. While the

57

4. Identifying Recurring Concerns and Practices

normal development of the project is going on, the Dispatcher can intervene the standard
sprint schedule and assign urgent tasks directly to developers or teams. This guarantees a
certain reaction time to issues, which the case organization was obliged to by contract in
some projects.

4.4.3. Sprint Zero

Pattern Overview

ID M-6

Name SPRINT ZERO

Alias Phase Null

Summary To get a common understanding of the project and to align ev-

ery stakeholder with the requirements, a Sprint Zero is conducted
before the development work is started. It is similar to a nor-
mal Sprint, however the sprint backlog is filled with tasks on fea-
ture prioritization, work planning, and assigning stories to future
sprints, rather than producing a deliverable product increment.

Example

Team1 was developing the predecessor of Product A. During the development, the re-
quirements and project scope changed drastically. The Scrum Master of Team1 decided to
run a Sprint Zero before the next actual development Sprint to ensure that the develop-
ment team and the stakeholders are aligned again.

Context

A new project is set up by the company. The stakeholders and development team are about
to start their work. Or the requirements of an already running project are changing very
drastically.

Problem

C-44: How to deal with communication gaps with stakeholders?

C-63: How to explain requirements to stakeholders?

C-116: How to deal with an existing development team before requirements are existing?
C-127: How to meet release dates?

Forces

* In the agile context it is — by definition — hard to define what will be delivered when.

* Stakeholders often do not have a clear understanding of the requirements.

¢ Stakeholders and the development team often have different views on what is tech-
nically possible.

58

4.4. Findings on Good and Bad Practices

Solution

To get all the stakeholders and the development team aligned on requirements and vision
for a new project, conduct a Sprint Zero before actual development work starts. All stake-
holders of the project and the development team physically participate in the Sprint Zero.
The tasks of the Sprint Zero are focused on definition of requirements, establishing a com-
mon vision among all stakeholders, prioritization of features, and general structuring of
future work. The outcome is not a deliverable product increment but a thoroughly defined
base for starting the actual development work.

Variants

This practice was also described in a workshop-like setting instead of a sprint structure.
A variant, which has been used by Team1, is to also conduct a Sprint Zero in cases when
the requirements of the project are changing and the development team needs to be re-
aligned with the other stakeholders.

Consequences
Benefits:

¢ All stakeholders get a common understanding of requirements.
¢ All stakeholders understand what is technically doable by the development team.
¢ Delivery plans and deadlines can be estimated in cooperation and more precisely.
Liabilities:
¢ Usually it is hard to physically gather all stakeholders for a period of a sprint.
¢ Danger of being too fixed on the created backlog and prioritization after the Sprint
Zero.

See Also
¢ The Sprint Zero is also mentioned in [72].

4.4.4. Background on Sprint Zero Practice

A Sprint Zero was conducted by Team1 during the period of observation. Interviewee
PO3 pointed out that the team was facing the concern C-116: How to deal with an existing
development team before requirements are existing?. The team had been set up during summer
2018 and the requirements of the project since then kept changing extensively. Interviewee
M1 described a similar practice, calling it 'Phase Null’. This name is used as an alias for
the practice in the documentation. Participant AC1 described a similar practice in form of
a kick-off workshop that is conducted before project start.

The Sprint Zero practice describes a phase of bringing together and aligning the various

59

4. Identifying Recurring Concerns and Practices

stakeholders of a project. It is called 'Sprint Zero” because this phase can be structured
just like a normal sprint. It can include the Sprint Planning, Sprint Review, and Retro-
spective meetings. The Sprint Zero is conducted before a project is actually started and
before any development work is done. All the stakeholders come together physically in
one place. The goal is to establish a common understanding of the requirements and to
build a common vision of the project. A Sprint Zero can also be conducted between two
normal sprints, which is what we observed at Team1. This can be useful after profound
changes have been made to the requirements or the environment of the project. It helps to
realign all the stakeholders and to reshape the common vision for the project.

4.4.5. Representative Exchange

Pattern Overview

ID CO-6

Name REPRESENTATIVE EXCHANGE

Alias

Summary If multiple teams are working together on the same product, at

least one delegate of each team physically participates in Sprint
Plannings and Reviews of the other teams respectively.

Example

Teamb is developing their product together with other teams located elsewhere. To make
sure all important information is exchanged between the distributed teams, a delegate of
each team takes part in the Sprint Planning and Review meetings of the other teams re-
spectively.

Context
Multiple teams working together on one project or product. The teams are not co-located.

Problem

C-1: How to coordinate multiple agile teams that work on the same product?

C-121: How to deal with not being able to physically sit together in distributed teams?
C-138: How to deal with distractions in online meetings?

Forces
* People often get disconnected from remote calls (e.g., via Skype), either physically
by losing connection or by getting distracted from other things on the computer.
¢ Discussions about complex topics are easier to do in person because remote calls are
not as interactive.

60

4.4. Findings on Good and Bad Practices

Solution

To make sure all important information is exchanged between distributed teams, a dele-
gate of each team takes part in the Sprint Planning and Review meetings of the other teams
respectively. The delegate can ask in-depth questions at those meetings and can inform his
'home-team” about important decisions and work that is going on in the other team. Fur-
ther, the delegate can serve as a contact person for the remote team to ask questions about
the work of the "home-team’.

Variants

The Representative Exchange can also be conducted with special groups such as Security
and Quality Assurance. In this case, the special group sends a delegate to the different
development teams of a project to ensure that their interests are taken into account at the
various projects of the organization.

Consequences
Benefits:

* The delegate can bridge the communication gap between the teams.

¢ The delegate can ask clarifying questions and request information outside of the
scope of a remote call.

¢ The delegate can also provide information about what his own team is doing.

Liabilities:

¢ Itis expensive to allow the delegate to travel to the other team’s location.

¢ The more teams that are collaborating on a project, the more delegates have to be
sent out.

4.4.6. Background on Representative Exchange Practice

The Representative Exchange practice was described in two contexts. Interviewee PO1 de-
scribed that they were using the Representative Exchange between different development
teams, to attend the Sprint Plannings and Sprint Review Meetings of their peer teams on
the project. Interviewee M1 described the Representative Exchange in the context of inte-
grating representatives from special interest groups, such as Security, Quality Assurance,
and Software Architecture. It helps integrating them directly into the development work
of the teams. However, as the resources of these groups are limited and the organization
can be large, it might not be possible to send a delegate to each development team in the
organization.

The Representative Exchange practice focuses on the problem that distributed teams can-
not have their meetings physically together. To deal with this situation, the teams of a
project can exchange individual delegates to physically attend at least the Sprint Reviews
and Sprint Plannings of the other teams respectively. If possible, the delegates could attend
even more meetings. This helps establishing a hot wire to the peer teams and ensures all

61

4. Identifying Recurring Concerns and Practices

necessary information is exchanged between the teams. The delegate serves as a connector
for teams.

4.4.7. Team Homepage

Pattern Overview

ID V-5

Name TEAM HOMEPAGE

Alias

Summary To make it transparent for everybody inside the organization which

teams are currently working on what, each team has to maintain a
Team Homepage in the internal Wiki.

Example

The case organization has many thousands of employees. To ensure one can find a contact
person for a project and get an overview who is working on what, the development teams
maintain Team Homepages.

Context

In companies with many teams one cannot know each team and who the members of cer-
tain teams are. Teams and members should be findable, to be able to contact them when
required.

Problem

C-34: How to ensure the reuse of enterprise assets?

C-83: How to deal with lacking knowledge of another team’s activities?
C-99: How to deal with discovery of redundancies?

Forces

e Itis often hard to find responsible persons for other projects in case of dependencies.
* Due to the large size of the organization, it is hard to know which projects are exist-
ing and which teams are working on them.

Solution

Each team should create and maintain a Team Homepage in the corporate intranet or wiki.
The mandatory and optional fields that have to be maintained on the Team Homepage are
shown in Table The Team Homepage contains information about which product the
team is currently working on, who is part of the team, which roles are present, and links
to other pages that the team is maintaining. Additionally, the Team Homepage should
contain a way of contacting the team. Rows with <...> are optional fields that do not have
to be present in every instance of the Team Homepage.

62

4.4. Findings on Good and Bad Practices

Product

Name of Product

Product Owner

Name of PO

Scrum Master

Name of Scrum Master

Software Manager

Name of Software Manager

Developers List of all the Developers in the team

QA Name or list of persons responsible for quality

Technical Writer Name of Technical Writer

Email The email to contact the team (manager’s email or mailing list of team

members

<Headcount Planning>

The organization unit where the headcount planning for this team is al-
located

<Headcount Requests>

The organization unit where to send headcount requests

<Instant Messaging>

The address to reach the team at the used instant messaging service

<Architect>

Name of Architect

<Subject Matter Expert>

Name of Expert for the Project

<Business Service Owner>

Name of Business Service Owner

<Release Manager>

Name of Release Manager

<Useful Links>

List of other useful links (e.g., the code repository, or online agile board
of the team)

<Location>

The location where the team is sitting

Table 4.7.: The information fields that have to be maintained on the Team Homepage. Op-
tional fields are marked with <...>.

Variants

The Team Homepage can be adjusted as needed. The Table highlights which fields
have to be maintained on the Team Homepage to ensure a certain level of information and
which fields can be varied. Individual information can be added by the team (e.g., calen-

dar).

Consequences
Benefits:

* Everybody can see which teams are working on which projects.
¢ Contact persons can be found easily.

Liabilities:

¢ Additional effort for the team to maintain the page.

Data Collection

Each team maintains the content of its Team Homepage itself. The information should be
updated as soon as possible after changes. The Figure 4.7| shows the data model of the

Team Homepage.

63

4. Identifying Recurring Concerns and Practices

OrganizationMember Team
+ name: String consists of & + Project: String
+ role: String + name: String
1..n 1
maintains
1
references TgamHomepage
+ url:String
1..n

Figure 4.7.: Data Model of the Team Homepage

4.4.8. Background on Team Homepage Practice

The Team Homepage viewpoint practice was used by all observed teams at the organiza-
tion. While the pages of teams Team4 and Team5 contained only the information fields
in the practice’s documentation sheet, those of the teams Team?2 and Team6 contained ad-
ditional information such as team calendars, and descriptions of the project requirements
and target audience.

64

4.4. Findings on Good and Bad Practices

4.4.9. Demo Driven Development

Pattern Overview

ID AP-2

Name DEMO DRIVEN DEVELOPMENT

Alias

Summary Development that is driven by central marketing demos often does

not incorporate a solid architecture and system integration, be-
cause the successful marketing demo is valued higher than solid
development.

Example

Interviewee PO3 mentioned that the initial development phase of their project was highly
driven by a marketing demo, which a board member had already scheduled before de-
velopment start. The team worked towards this demo deadline, instead of taking enough
time to create a solid project architecture and define how the system should integrate with
other systems.

Context
The project is in an early development stage. A marketing demo is taken as a development
goal or deadline.

Problem
C-8: How to ensure that non-functional requirements are considered by the Development Team?
C-117: How to deal with demo driven development?

Forces

* Demos are often scheduled by persons outside of the team.

* Demos are important for marketing and sales, however deadlines coming with a
scheduled demo increase the pressure on the development team to deliver mar-
ketable features instead of a solid product.

General Form

Marketing demos are set up by board members for sales purposes. If these marketing de-
mos are scheduled before the scope of the project is actually defined, this is an anti-pattern.
It adds a deadline to the development team before the project could even start up correctly
and before a thorough architecture could be defined.

Consequences
Liabilities:

¢ Team is put under pressure.

65

4. Identifying Recurring Concerns and Practices

* Development work is oriented on what is needed for the demo, not on what is most
important for the project.
¢ Important work such as architecture, documentation, and security is neglected.

Revised Solution
Interviewees PO3 and SA2 both described that a way to revise the solution is to postpone
marketing demos until the project is up and running properly.

4.4.10. Background on Demo Driven Development

The Demo Driven Development was described as a concern (C-117) and as an anti-pattern
candidate (AP-2). The concern from team level perspective was how to deal with mar-
keting demos that have been scheduled too early by higher-level management. The anti-
pattern candidate from development perspective was that the development focused too
much on demo-oriented features instead of thorough solution design. Interviewee PO3
described that the development of their new product was driven by a marketing demo
from the start. This hindered the teams to focus on solution design and architecture in the
early stage of the project. Instead, it forced them to focus on demo related features. PO3
also drew a strict line between marketing demos and development demos. The latter are,
in contrast to marketing demos, useful for development and gathering feedback. A similar
situation was described by interviewee M1 and observed in Team2. The case organization
held an in-house exhibition during the time of this study. As the exhibition was approach-
ing, Team2 was struggling to meet the deadline. They complained about missing time
for sophisticated development and testing. Interviewee M1 named this situation 'Event
Driven Development’. Besides this, participant SA2 mentioned in the interview that doc-
umentation has been neglected due to this Demo Driven Development. As a result, SA2
recognized an increasing division of knowledge.

66

4.5. Coordination Mode Analysis of Identified Practices

4.5. Coordination Mode Analysis of Identified Practices

To get a better overview about when the presented pattern candidates where applied at the
case organization, Figure shows a mapping of the ‘Communication & Coordination’
pattern candidates into a coordination mode matrix. The figure shows on the y-axis to
which coordination mode, according to [55}|77]], each pattern belongs. And on the x-axis it
shows how frequent the pattern is applied at the case organization. The Scrum meetings
[CO-19: DAILY STANDUP MEETING, [CO-20: SPRINT RETROSPECTIVE MEETING), [CO-21]
[SPRINT REVIEW MEETING, and [CO-22: SPRINT PLANNING MEETING| were used by all
studied teams at the case organization. The documentation in the Appendix |C|regarding
these meetings contains only the most important information, as they are widely known
practices and are described thoroughly in the Scrum specification. Further, the following
other important coordination mechanisms are also shown in the matrix:

¢ The |CO-15: OPEN WORK AREA| of the organization’s office in Munich contributed
considerably to the communication of employees. Interviewee SM1 pointed out that
the work space reduced the need of scheduled meetings for him as it is easier to walk
over to colleagues to resolve small issues. The open work area is also linked to the
ad hoc communication.

* The organization was using a[CO-16: INSTANT MESSAGING|service for asynchronous
communication. Each team maintained its own group in the messaging service and
general topic groups (e.g., product related groups) were maintained by administra-
tors of the organization.

e Additionally to the instant messaging the organization also maintained a
|ONLINE FORUM]| for questions and answers. This online forum could be used by
employees to discuss a variety of topics (such as development work or organizational
topics), coordinate workshops, share presentation slides, and more.

¢ A lot of work coordination at the observed teams was done via [CO-18: AD HOC
[COMMUNICATION} People would just talk to each other to clarify things when they
met on the floor or in the coffee corner. Unscheduled meetings were held on a daily
basis between two or more persons.

¢ Each of the observed teams used an [CO-23: ISSUE TRACKING TOOL| to document
and assign tasks and issues. While teams were using tools from different vendors,
the most important aspect was that this tool was accessible for all Scrum team mem-
bers. It helped people to get an overview of who was working on which tasks and
how the team was progressing.

Besides those mechanisms, the case organization also heavily relied on the
[PROGRAMMING| practice. Interviewees from all three product areas mentioned pair pro-
gramming as a useful tool of regular use. Especially for knowledge sharing and providing

67

4. Identifying Recurring Concerns and Practices

feature specific help across different locations and teams. The pair programming tech-
nique was used as a direct person to person coordination mechanism. This was enabled
by video conference and screen sharing tools used at the organization.

The coordination mode matrix in Figure highlights that the studied teams at the
case organization largely relied on group mode coordination mechanisms. Besides that,
the unscheduled ad hoc communication mechanisms (Open Work Area, Personal Ad Hoc
Communication via Instant Messaging, and the Online Forum) throughout the three co-
ordination modes were important for the coordination of work. These findings are in line
with those of the study on group mode coordination in large-scale agile software develop-
ment conducted by Dingseyr et al. [28]]. Compared to the determinants of the coordination
modes [77], this observation of significant focus on group mode coordination mechanisms
is in line with the task interdependence determinant. However, it contradicts the hypothesis
regarding the size of work unit determinant. According to the hypothesis of Van De Ven et
al. [77]], increased task interdependence yields a significant increase of group mode coordi-
nation. The observations indicate that this relation is true at the case organization, as nine
interviewees were concerned with C-84: "How to deal with unknown dependencies between
teams?” and we observed high usage of group mode coordination. Further, Van De Ven et
al. [77] also state that increased size of work unit yields a decrease in group mode coordina-
tion. However, as the case organization’s Product A team sizes and headcounts have been
growing throughout the course of this study, the teams decided to start implementing the
Nexus framework on top of the existing Scrum teams in the following months. This can be
categorized as an increase in group mode coordination and therefore does not match this
hypothesis.

Regarding the impersonal mode coordination mechanisms it should be noted that due
to the size of the organization very many impersonal coordination mechanisms were in
place. The ones depicted in the coordination mode matrix in Figure |4.8are those that were
used by the observed teams. Other teams, especially at other office locations, might use a
different set of impersonal coordination mechanisms.

68

4.5. Coordination Mode Analysis of Identified Practices

9POW UOTJEUIPIO0d Aq PazI1033)ed “‘UoneziuedIo ased ayj je SWSIULDIW UOJEUTPIO0D PIAIISAO T, 'g'F dINII]

Appeom-1q > Appeom-1q Appoom Appeom <
Kouanbaig
IoU10) SunooN Suruuerg MITAY [000101g sme1S el young Mm_ﬁo_z
ue)
99JJ0D £1-0D jusuLulgey 2-00 inds 7z-00 wids 12-00 19fo1d £-0D ¥1-00 ba%ﬁ.ﬂu
Sugenqoq Sunooy Suruueg aAnadsonay aAnvadsonay] Sunes Sunoesy wniog
109(014 G-0D QUOISAMIAL T1-0D BV 8-00 wds 02-00 ageu], 3ng 6-0D Areq yutof 1-0D PO
dnoin
dnoin
UoNBUIPIO0))
uoneI3au] $-0D
a spea]
12UI0DA(J D! UONBOIUNWWO)) yuouoduwo))
aAneIuasaIdoy
€-00 : 9-00 O0H PV 81-0D pamnqinsia
11-00
MIIAY 193]
wea], sso1) 01-0D
PO
Jeuosiog
wniog SuidessoN
QuIuO LI-0D JueIsuy 91-0D
100, Sursjoer], BAIY JIOM
anss[£2-00 uwdo §1-00 P~
Teuoszoduy

UoNBUIPIO0)) UONEUIPIO0)) SPON
wea] -enu| wes] -1oju| UONRUIPI00))

69

4. Identifying Recurring Concerns and Practices

70

5. Discussion

This chapter reviews the key findings that we learned from the previously presented study
at the industry partner. It also discusses quality considerations and limitations of the thesis
in Section5.2l

5.1. Key Findings
Besides the identified concerns and practices, this thesis yields several key findings:

¢ The pattern language approach of the LSADPL and consequentially this thesis were
generally well received by the participants. Most interviewees were familiar with
the concept of patterns from the software engineering domain and embraced the
translation of this concept to the organizational domain.

* Most of the identified concerns are on team level. This emphasizes the importance of
a strong team level agility as a basis for successfully scaling agile methodologies to
larger contexts. Team level understanding of agile values is important for large-scale
agile development.

¢ While the focus of this thesis is on coordination and methodology concerns, some
of the identified concerns cannot be exclusively assigned to one of these categories.
Some concerns can also be categorized into other fields of the LSADPL. Especially
the geographic distribution, which has a dedicated concern category in the LSADPL,
is connected to many coordination concerns at the case organization.

* Many of the identified concerns cannot be exclusively attributed to one stakeholder-
category. On team level, concerns often apply to multiple stakeholder-categories at
the same time. Thus, we find that it might be useful for future work to differentiate
between concerns that are relevant to a stakeholder and concerns that a stakeholder
actively addresses by taking action.

* The industry partner organization largely relies on group mode coordination. We
find that this observation is in line with the assessment of group mode coordina-
tion in the literature. Further, inter- and intra-team coordination are balanced at the
studied organization.

71

5. Discussion

* The open work area of the industry partner’s Munich office significantly facilitates
ad hoc communication and personal information exchange between people.

5.2. Limitations

This section gives an overview on quality considerations regarding validity and reliability
of the study. In general, this study followed the four principles of data collection of [80].

1. We used multiple sources of evidence in the form of sampling interviewees from
different teams in the case organization.

2. We maintained a study database throughout the course of this study. However, it
cannot be made publicly available.

3. We established a chain of evidence by coding the data following a defined system of
codes.

4. We only added third degree sources to the study database that have been created by
internal persons of the case organization.

The construct validity describes whether the used operational measures are correct for
measuring the studied concepts, and whether data is collected objectively [80]. In this
study the construct validity is addressed by using data source triangulation to collect data
[80]. We used multiple data sources in the form of interviewees from different teams,
documentation maintained by different teams, and observation of meetings of different
teams. Further, coding the collected data, as described previously, ensured that a chain
of evidence is provided for the findings. However, we cannot make the study database
publicly available to support the construct validity.

The internal validity describes whether the findings actually portrait the studied concepts
authentically [52]. In order to achieve internal validity, we handed out a preparation docu-
ment to the participants alongside the invitation to the interview. This document described
the context and the research project in detail to make sure the interviewee and researcher
started the interview from a common ground. Further, the interviewees were presented
the list of already identified concerns only after they had identified and described their
own concerns and solutions to not influence their answers.

The external validity describes whether and how far the findings of the research are gen-
eralizable beyond the study and to other contexts [52]. We documented the findings of
this study in the form of patterns that address specific concerns in the context of large-
scale agile software development. Therefore, the identified concepts may be used by other
organizations to evaluate their applicability in other environments. However, the context
in which the findings can be applied will most likely stay restricted to large-scale agile
development.

The reliability describes whether a study has been conducted consistently in process and
methods, and whether the study can therefore be reproduced by other researchers in the
future [52]]. We collected the findings at the case organization over a period of five months

72

5.2. Limitations

time. However, both the problems and the solutions found in the case organization may
evolve over time in the future. Therefore, the findings of this study may not be repro-
ducible by other researchers at the same case organization, let alone at other organizations.
As interviewee SM2 stated in the interview: “As usually in agile, maybe in a few months’
time we identify something else or maybe come up with a better solution.” Hence, the
reliability of the findings of this thesis cannot be assured.

Additionally to these important research quality criteria, it should be mentioned here
that the interviews as well as the coding of the interviews have been done by one re-
searcher. However, the finished coding was reviewed by a second researcher who is versed
in the topic and literature of this thesis.

73

5. Discussion

74

6. Conclusion

This last chapter summarizes the thesis and gives an outlook for future work.

6.1. Summary

In this section we answer the research questions of the study.

RQ1. What are recurring coordination and methodology concerns in large-scale agile
development? To answer this research question, in the semi-structured interviews we
asked practitioners to identify their most pressing concerns regarding coordination and
methodology in large-scale agile software development. Additionally, we asked them to
identify recurring concerns from a list of concerns that we identified in literature and other
interviews. In the study we identified 28 new concerns in large-scale agile development
that are relevant to three or more interviewees. Further, we found that 34 previously iden-
tified concerns are relevant to three or more of the interviewed practitioners. Thus, we
consider them being recurring concerns. The findings show that while many of the con-
cerns are on above-team scaling levels the majority of newly identified concerns are found
at the team level. This indicates that the frictionless functionality of individual teams is a
vital prerequisite for successfully applying agile methodologies at scale. This finding may
be attributed to the selected interview participants. Most of them were working inside the
actual development teams. As the initial work on the LSADPL focuses mainly on concerns
and practices of Agile Coaches and Scrum Masters [35], the findings in this thesis comple-
ment the existing ones.

RQ2. What are good practices for addressing recurring coordination and methodology
concerns in large-scale agile development?

To answer the second research questions, we asked interviewees to describe solutions they
apply in their work to address the identified concerns. Further, we observed the daily
work of the teams, as presented in Section We identified 38 good practices, divided
into 23 coordination practices, 9 methodology practices, and 6 viewpoint practices. Al-
though some of the interviewees mentioned there had been previous tests to apply SAFe,
we found that the case organization did not use any framework to apply agile method-
ologies at large-scale. Rather, the teams themselves decided on how to work and how to
collaborate with other teams.

RQ3. Which anti-patterns regarding coordination and methodologies should be avoided
in large-scale agile development?

Additionally to identifying good practices, we also asked interviewees whether they ex-

75

6. Conclusion

perienced any bad practices when trying to address their concerns. We identified 4 bad
practices to answer the third research questions.

6.2. Outlook

We collected all of the presented concerns and practices at the described industry partner.
As mentioned earlier, the LSADPL uses the rule of three to distinguish between good prac-
tices and actual patterns. Therefore, additional qualitative studies at other organizations
have to be conducted to find which concerns are recurring across several organizations,
and to identify actual patterns among the documented pattern candidates of this thesis.
Complementary quantitative studies may be conducted to identify patterns. Further, fu-
ture observation and study at the industry partner of this thesis could be conducted. Es-
pecially with focus on the plans in Product Area A to introduce the Nexus framework
for scaling agile development. The transition from the current setup to the Nexus frame-
work and its effects on the concerns and practices may be of interest for future research.
This study conducted the first two steps of the PDR approach observe & conceptualize and
pattern-based theory building & nexus instantiation. Hence, future research should build on
the results of this thesis to implement the remaining two steps solution design & application
and evaluation & learning. The results of this thesis can be used as foundation for future
research to design a solution for an organization that wants to implement scaling agile
practices. The application of this solution design and the observation of subsequent devi-
ations at the organization would close the feedback loop between academia and industry
that is intended by the PDR.

76

A. Appendix

A.1. Interview Questionnaire on Identifying Concerns and Good
Practices

The following questions were used to conduct the semi-structured interviews for this the-
sis:

First Part: General Information

1. Section: Questions about the Participant

a) Which role description applies to you?

b) How many years have you been active in the field of scaled agile software de-
velopment?

2. Section: Questions about the Team
a) How long has your team been using scaled agile software development?
b) How many members does your team have?
¢) How many of them are developers?
d) What other roles are present in your agile team?
e) Is your team internationally or nationally distributed?
f) When did you start development of the current project / product?
3. Section: Questions about the Organization
a) How was agile transformation initiated in your company?

b) What differences do you see in traditional agile development and large-scale
agile development?

c) How do you rate the maturity of your business agility?

77

A. Appendix

Second Part: Identification and Description of Concerns and Practices

1. What are the recurring concerns you face in your role?

2. On what level do these typically occur and how often are you confronted with them?
3. In which category would you classify the concern?

4. Which practices do you apply to address the concern?

5. Which practices should not be applied to address the concern?

Third Part: Identification of Recurring Concerns and Description of Practices

1. Which of the following concern did you face in your role?

2. At what level do they typically occur and how often are you confronted with them?
3. In which category would you classify the concern?

4. Which practices do you apply to address the concern?

5. Which practices should not be applied to address the concerns?

Fourth Part: Discussion

1. Do you have any comments or open points?

2. May we contact you again in the context of the study if necessary?

78

B. Appendix

B.1. Documentation of Concerns

The tables on the following pages contain all recurring concerns we identified during this
study, which were raised by three or more participants. For each concern the attributes for
identification, name, description, category, scaling level, and the source are documented.

79

B. Appendix

“wred) yuswdoPAap oy}
pue OJ 9y} yoear ued sjuswaambar yorym woiy ‘sppu
-UeLd UOHEITUNUIWOD PUE SISPOYDNeIS JO apnjnnuu

33 ST UI9dUO0D SIY) JO wd[qoid ayJ, ,,"dwn wopuer Aue ¢ sapis Juaiaffip
uon | ye uosiod wopuer Aue woj QY311 pue 3o woaj Jur | woLf Suoo
-eUIPIOO)) 2P | -w0D syuswImbar aaey noA ey suorezruedio 31q ut sjuowianbas | QoL
TIAS wes], [uonedrunwwo)) | wapqoid e [], SI 31 ey} ‘paquIdSap TINS 99OMIIAINU] | yjim [vap 0§ MO o)
*SONZeI[[0d IOTUSS Jsurede SUIIDUO0D II9L]} dSTel
0} aydoad rotun(ssjeprumur sowmawos uoreZuedio
3SED S} UI INJONIIS [EDIYDILISIY S} ey} ‘PaqLIdsap
OSTe CINS 99MOIAIU] |, 'Peaye 398 },ued nok a1aym
seare 10 saiod swos sfemle aIe dI9Y} U} pue
ydnous 1ey dn 03 03 aaey isnl nox 219y ApuoIay
-JIp SIY} Op 9M, noA [[} jey} jurod awos je suone)
-Tw] are 919y} udyo [°], uonezruedio 1adrel g}
Ul ‘A[[eoneIdowsp PaInjonI)s are swed} Jide y3noyy £ Sa4ngonys
USAT ,,"SIWI] S)T Sayoear AJrde ‘A[[edrydreidary painy | Auvjps puv saiyo
IN -ONIs are YoIyMm ‘sarnjoniys ajerodiod [euonipen} Ul | -ivialy ajpiodiod | 0L
‘CINS v | ASoropouyisln | [], 1Y) SOAIISqO 9y POUOUDW [N 99MIIAINU | yjim [pap 0j MOE])
‘syuewraImbar ur sadueyd SNOLIsS [e19AS
Ppooey Ao} y10M JudwdO[aAdp dY} UT asnedaq DumQ
1ONPOIJ PUE I9ISEIA WINIDG dY} I0J JULAI[OI SEM UID ¢ Spuauaiinbai
-Uu0d SIy} ‘Turea], ut Afrerdadsy -adoos pue syuswarmb | ur saSuvyo aianas
-a1 309loxd ur sadueyd juanbaiy 03 anp uonexnsniy jo | ‘quanbaiy apdsap
JOSPUTIIAl | 10[B [[IIS Sem aIal} uoneziuedio ased ay} ul ‘oduewd | pajpajouws wivdj | 10T
¢INS wed, | 3 amym) | aoerquud 0} afdoad j10yxe sanfea ofde ydnoyy uaayg | oy doay o3 moy D
[9AT
21no0g SGurreog A108332) uondimsag dwreN al

80

B.1. Documentation of Concerns

*3seD SIU} Ul due[eq
UTE}ISD B 3INSUS 0 J[NOLJIP 3T PUnoj JINS “SIaquuowl
wed} paduarradxa Apearre 03 way) udisse snyj pue
3T} UT S¥{Se) [edTLID STUTJ O} Wed) S} JO Pasu 3} pue
‘sardojouoa) mau ured] 0} aydoad , 19MoOfs,, JO dI1SIP
3} ddUeTeq O} IS WINIDG d) I0J pIey ST)| "SId
-dotaasp renprarpur jo spaads Surures] pue Juryiom
JUDISTP YIIM SUI[eap Je sanssI umej sem wed))

¢ sdaquian
wway Jo spaads

‘saurpeap dunpoeordde Surpredar amssard y3ry oy | Sumiva) juaiaffip | 80T
TIAS wedl, | ASO[OpoyleA | 03 anp jey} “UIdu0d Y} passaIdxa TIAS I9ISeIN WG | yjim [pap 0§ MOE])
“pasporq uayo st jurrds 3uro3uo ayy ut ¢saouapuadap
SI0M 3} swmueawr a3 uy ‘sarrmbur 0y Ajdax 0y swny | Jo asvo ur ajdoad
uor) | SuOo[e 9ye} Ud}JO UONeZIuedIo ay} Ul S[eNPIAIPUL IO | 10 SWVd} AdYjo
-BUIPIOO)) 29 | SWIEd} JOYJIO0 Jelf} SO9MITAIDIUI [RIDAIS I0J UISDUOD € ST | fo Suoroval mojs | LOL
TIAS | uonreziue3i |uonedrunuwwo)) | 31 ‘4urids e 3urmp saruapuadop UaasaIoyun Jo 3sed U | yj1m [pap 0§ MoK o)
-awmy-jred ATuo afo1
ST} SUIOP dI9M SI9ISEJA] WINIDG SWOS Jey) Joef 9y} Aq
PODIOJUD SeM UIDUO0D SIYT, "OJ Y} YIm 19y3a303 301
-yorq 9} 9zruedIo 03 S)O[s W) purj 0} 3[33nIs Aoy} ¢ 8oppong
yeyy) sIv)sejN wnidg Aq passardxe sem 1 quowdorea | ayy aziuvdio 03
-9p pue SSauIsng JO SIPIS OM} A} UdM)aq SUDIOM | Laum(O) JoNpoid
uor} | ST pue ‘Asnq AI9A ST UslJo OJ Y} asneddq "OJ 9t | ayi yjm yiom
-eurpI00) % | ym uoneroqerjod Jurpredar swapqoid uoneurprood | 07 auwiyy fo vy | 90L
TIAS Wed], [UOedIUNUWIWO)) | SICIIdSIP Jey} ‘SI9ISeJA] WINIDG JOJ UIdDUO0D © SI ST | Yyjim [uap 0] MOH)
[9A1
221no0g Gurreog A108332) uondisag dweN al

81

B. Appendix

“wred} yuawdo[pAap dY3 JO sIdquIdW A INOTARYd]
mpoadsaisip 03 paf 109loxd oy jo eare ayy ur asnrad
-X9 TedTuyd9) 3ursstu 1Ry} ‘stauonnoeld afide pajeon
-siydos a1om waY) Jo Yjoq Y3noy} ey} sem sy} 1oy
uoseal 9], "wed} Juawdo[oAdp ay} Aq I9)SeJ WNIdG

S Wvay ayy
fiq 421SUIN WNAOG
puv sumQ on

pue UM 1PNPOIJ 943 Jo adueydadoe oy} Yiim sansst | -poid Jo aouvidad | €L
N wed, | A3ofopoyulsy | paoey ay ised ayj Ur Jey) PaqrIdsap N Iodeurw Y], | -0v a4nsua 0 MOE)
‘A793o1dwrod urad
-U0D 9} 9AJOSDI JOU PIP INq ‘SIY} uo pasordwr wnidg
0} UO}IMS 9L 51901, ur AJuo Sunpjury} woyj o}
Pa] uoryenyis siy3 ur A3ojopoyiowr uequey ayj jo ade
-sn Y} pue ‘syse} pajefar Ajumodas pue saydyed 3utop | ;spwos joalosd puv
Asnq A19A sem wreay oy, “309loxd mayy jo [eod xo3rel | yxaju00 1a8iv] Ay
3y} uo 3ursndoj [qnox pey Fwes] wed) yuswrdoroa | uo pasnoof wway | TIL
1a wed], | ASO[OPOYUISIA | -Op Oy} SI9YM SUOLILNIIS PALIdSIP (] dOMIIAINU] | ayj dasy 0] MmOH D
‘syuauodwod usamiaq
UoneISAUI puB SWEd} UddMId] UOHRUIPIOOD [LUOr)
-Ippe sarmbax amjosmyore sd1AISS-oIW Y] T $2ANJ0931Y24D
pres /, Swa)sAs panqgLisIp 3y SUrjeurpIood Uo STAIdY | a01243S-04011L U0
sndoy urew InQ), -d[puey o} xo[dwod A[Suiseamdur | pasvq suwashs
st adedspuey adrATes-o1dTW UIdIoUW A ‘sured) pue | Jo fxagduioo
o | spoaloxd Auewr ssoxde yuswrdopasp Jo uonnqrysip oy | Suisvaour yjpm | QLL
Id | vonezuediQ | -1y 2IEM}OG | 0} aNP ‘Jeyf} UIdOU0D Y} PIUOIUSW [(] SOMIIAIDI] | [vap 0] MOK)
[9AT
21nog SGurreog A108332) uondimsag dwreN al

82

B.1. Documentation of Concerns

“y3nous pajed
-nsrydos jou sem uonruyap 309foxd Tenur sy asned
-9q “o9lord 19331q yonw e ojur paSiowr usAd Sem
Tureat, jo 3o9foxd Tentur ayy ‘APrewnyn -3o9loxd ayy
jo adoos Gurdueyo pue sjyuswarmbar ajarduwoour 0y
Pea] ST} e} “UISOUO0D) PIUOTIUSW O YL PUTj
-9p A@91dwod sem uo sy1om 03 pasoddns azom Aoy
103loxd oy a1039q ‘dn 39S pue pajeaId sem wed) Y,
"3SED 9} SeM Joje[Ay} e jo ased uj ‘dn 39s I
1oaloxd oy a10j9q pajres uLaq sey Sumgels asnedaq

¢ SU13S1X9 241
sjuatuaainbas aiof

uor} | 10 ‘paysiuy 3ureq wea} 3y} jo 309loxd snorasxd e 03 | -aq wway juado
-eUIPIOO)) 2P | aNp 3q ued SIY[, ‘papels A[renioe st joafoxd 1oyy o103 | -janap Suigsixa uv | 9L
€0d Wed], [UOHedIuNWuo)) | -9q ISIXo Apealfe Usjjo swes) ‘suonjezruedio adrey Uy | yjm [pap 0§ MOE D
‘swrea) afdnynuu J0aj5e Jey) suors
-109p 9Ye} 0} J[qe aq 0} auodwos jurodde 03 10 “Are
-uos1od SUOISIDOP IS0} S eW IoydyM 0} Sem A JO
UISDUOD], "SUOISDAP yons axe) 03 uosiad y3r oy
are 1a8euey 1ONPOILJ A} I0U SOJ Y} JO SUO IS}Iou
Je) ‘pappe ZIN “UIddUO0D ST} PIJLIOSIP ZIA 99MIIA £sdnyas wivay
-IJU] "SUOT}ENJIS YDO[PeIpP Ul SUOISIDSP 9B} Ued yey} | -ajdyjnui ur suois | GLL
N weador] | A3ojopoyidly | uosiad auo aq 03 sey a1y} ‘sdnjes wresy-aydnmu uy | -100p ayvy 07 MoK)
oA
221n0g Gurreog A108332) uondunsag dweN al

83

B. Appendix

12do
-[9A9p e o¥I] “uosiad [edruyda} e JO UOnOE JjeTPIUT
armboax yeyy sysey 105 “3'g ‘pasdIyde 9q SAeMIe Jou
-ued sty ‘Jurids e 3urmp souLNFUI IPISINO WOTJ WEd)
3y} PIATYS PINOYS IDISLIA WNIDG A} WNIdG Ul y3noy)
uaAy ,,yurrds ayj 103 pauuerd jou arom jeyy s3unyy 10
sysey pajoadxaun st juswrdojesap Terousd ur JunpAie
-A3 Y}IM SUISDUOD UTeW dy} JO duQ),, :pres [OJ 9om
-1AIU “wred) juawrdoPasp Y3 Aq uonoe ue axmb

Junds ayg 3dna

-a1 pue qurrds Sutuuni e Sunmp ur Juruod are yeyy | -4jul juyj sansst | 6LL

10d wed], | A3ofopoylsy | ‘sxysey Surpuey jo wiajqoid 9y} SaqLIdSIp UI9dU0D ST, | yjim [pap 07 MOE)
‘uaALIp owap dojoa
-9p 03 pey pue saAfaswaly} d[oY J0u p[nod ures) sy} 0s
‘ToquIawW preoq e Aq pa[npayds sem owdp Y], ‘dIny
-D9)TDIe dIBM}OS Y3noI1oys e se yons ‘sordoy ogoads
-309f01d yuerrodur jo uonoda[3au e 03 PIY SIYL, ‘OWIP
siy3 103 so1do} Jueaarar uo AJuo pasndoy juswdorerap

uon | ay) ‘Tured], jo 303loxd oy jo adeys AJred A19A © UI PA[N ¢Juarudojon
-BUTPIOO]) 29 | -PaYds Uaaq Sey Jey}) OWap & 0} dNP Jey} PIUOHUSW | -9p UdQLp ouwap | LIL
cOd werdo1] |uonedrunwwo)) | 9 ‘¢OJ 99MIIAIUI Aq PasTel Sem UIDU0D SIYJ, | yjim [vap 0f MoK)
[9Ad]
21no0g SGurreog A108332) uondimsag dwreN al

84

B.1. Documentation of Concerns

" (SSUIJOIUL IULJUO UL SUOIJIVIISIP Y102 [VIP 0F MOF]
:8€T-D O} PIUI] OS[e ST UIdUOD ST, ‘AS0[ouyda) a3
jo sanriqrssod a3 Aq pajornsar st sdunesw 3urpioy
jo Aem 1oy, -Supesw oy} ur 3ursn are a3y} pIeoq
ay} ageordar pue syedrunuuod 03 A3o[ouda} uo AJor
0} aAeY A9 ‘1939303 IS JoUURD SWEd) PIANALIISIP
senyuod uj -3urop are Ady} SIOM S} UO 9)eIjUadU0D

¢ SHvaj
painqrisyp - ul
12132803 318 Aqqwo

uor) | ued Aoy, ‘sSuruue] juridg pue wnidg Arecq ayj se | -isAiyd 03 a)qv
-eUIPIOO)) 2 | Uyons sSunesw aArY 0} SPILOdaiTyM Iy} JO JUOIy Ul | Sutaq jou yjpm | ITL
NS wed], [uonedrunwwo)) | AresrsAyd 1oy3a303 J1s ued pajedo[-0d aIe Jey) Swed], | jpap 0] MO)
,,"9U0Z W} I}
10§ reord A3 AJTear jou are yey) sInoy 93uers Ul Joau 0}
[],, sureay sad105 3] °,,90Ueleq AT YIOM dY} Uo Joed
-wit ue sey [*],, Sy} 3y} WISdUOD SIY} 0} pappe 1DV
9OMIIAIRNUI ‘TN Aep Ydea SInoy oM} A[Uo yjm
110ys A[[eadse sem YDIUNIA UT 3SOU} PUE [ESIFUOIA
Ul swed} 9y} usamiaq def1oao awn SurjIom oy} ‘uon
-eZrue3I0 9sed 3 U] SI0M dY} [[9}LUIPIO0D 0} SUOZ
awn Ay} usaMyaq sawry def19A0 3I0YS dY} ST UIdDUO0D
e 3ureq seuoz awn d[dynur ssome JurIoM I0j Uos ;sauoz
el uon} | -BaI urews 9y, ,, Wed} PaIngLisIp Sy} ur SUDIom ur | auig ajdiynu
1OV weidoi | -eurpioo) 1 | a3udreyd 3s9831q 9y} SI S9UO0Z dwiry SSOIde JUDIOM | SS0U0p ylom v | OTL
“ZINS Wed], [UOTIedTUNWWO)) | PUe SawWi} 3y} [*],, ey} POUOUSW ZINS d9OMIIAIIU] | -1pL000 0] MO)
[9A1
221no0g Gurreog A108332) uondisag dweN al

85

B. Appendix

uon
-daxrp y3ux a3 ur 3urssardord st 3osloxd aygy o yoym
D3P UdY} 0] MOY pue ‘sured) S[dnnur sso1de JIom
uerd A[renjoe 0} MOY Uo pasrer sem UISDUOD d)} “UOT)

-ezrued10 ased 9y} Uy ‘swred) ajdnnu urpredar adue ¢ssaidoud
-pm3 apr1aoid jou op Aay ‘Swres) [ENPIATPUL UL YIOM | Yovij puv yiom | ST
1DV v | A3oropoysely | uerd o3 spoyiowr apraoxd syromawrery oide ayM | uvid 03 Moy)
‘saAnoadsonar Aq aroxd
-wt pue dseid 0} prey a10ja19Y) Ik PUE ‘[9AJ] Wed)
UO Se pIemioj Jydrens se Jou Ud)jo aIe S[PAJ] IoY31y
U0 $9s59001d UOnEdTUNUIWOD PUE UOHEUTPIOOD Wed)
-] DV 0} WISDUOD B SI 9[edS I93IE] UO SIAT)
-dadsonar 3uruuni pue sassadoid sy1om Jo juswaroid
-wI snonupuod dy) ‘Aferdadsy -oreds 193xe] ur sord ¢ sar8ojopoyjau
-ojopoyjaow pue sanpea dide SutA[dde Arenyoe ypm | o8y pajwos juows | $TI
1DV v | A3ofopoyssly | paureduod Jureq pauonuawr DY juedmonred oayy | -ojdwr o3 moy)
"SUIEa) U9dM}dq pue sured}
aprsur yjoq readde ued uredouod ayJ, -suop 3uraq uos
-19d yuasqe a3 Jo se} Ay} oYM arowhue ssardord
J0U PInod A3} a19ym ‘Jurod e paydea1 pue JI0M I}
PaNUIIUOD SISqUISW Wed) Y dw Jo porrad e 10§
juasqe sem 19dO[PAIP B ‘ZINS 99MIIAIIUL Aq POLIDS
uor) | -op ased remonted e uy junds Suruuni e 3unmp ¢ sauapuadap
-eurp100) 2y | sepudpuadep J[qedssarojun 10 payadxaun I9A0d | papadxaun ypm | TL
ZINS [IV [uomesrunuwuwo)) | -SIp Sues} aIdyM ‘SUOTeN)IS SILIdSIP WIddUOD SI | [vap 0§ MOK)
[9Ad7]
921no0g SGurreog A108332) uondimsag dwreN al

86

B.1. Documentation of Concerns

TN

weay,

A3o10poyIoN

“wred} JudWwdO[aAdP Y3 YIIM S}ORIdJUIL J[O1
SIy} MOY pUE ‘9[0I }O9}IYDIY 9IeMIJOS dY} JO UOTIUL
-Jop Tea[d> 3urssTuI 9} sem SI} 10§ U0Sear au() ‘soyIds
pue sydeouod jo jooxd o1y ‘suonerodxe TedTUYD}
AIeSS9D9UUN UO Pajsem Ud)jo Sem awir} uorezruedio
3SEd dY} UI Jey} ‘UIddDUO0D 3} Padej T[] 99MIIAINU]

;uoyviordxa
[D1U192] uo
a1y Suigsvm
pioay 03 MOK

6CL

TN

wer3o1J

A3o1opoyioN

-awm jo porrad 1a3uof e 1940 spo
-ypowr ofde jo uonyedrdde 3091100 SImsus 03 WA} 0}
UIOOUOD € ST)] "dWIT) I9A0 JOTALYD] P[O OIUT XDk [[eJ 03
puay oydoad yey) paaIasqo As] WA} 03 UIDUOD e ST
Apyuaysisuod pardde are pue o[qeureisns pajdope are
Aayj yeyy Surmsus ‘seare jonpoid 1oy} ur wapqoid e
jo 319 yey) J0u sem sar3o[opoyiaw J[I3e JO UOPNPOI}
-ur)} aIyMm ey} passardxa szaeuepy juswrdopasq

£d1quuvisns
saopovad 1Sy
20npoLJUl 0§ MOK

8¢L

TN

wer3or]

A3o10poyiaN

" SU1PSIXD
24v Sjuamainbai a10faq wiway Juauidojaaap Surjsixa uv ym
[Vap 03 MOL :9LT-D 0} PAUI] A[9SOO[ST UIDUOD SIY],
onpoid ayy jo yuswdoraaap a3 Surzumssard 10 Sur
-ALIp ISWO)SND JOIIIP OU SI IS], ‘DILMIJOS pIepue)s
Surdoaasp Appsown st uorjezrue3Io ased Yy} Jey) “Uos
-ea1 9y} 03 anp st sy, ‘3o3loxd sy 10§ saurpeap jeow
pue aunap A[[enioe 0} prey i sayew Sy, ‘Paprop
AJreuny usaq aaey syuswaimbar pue ssodind 1oy 2105
-9 Ppa3Ie)s uyjo are s3oafoxd uoryezuedio ased a3 Uy

¢ Savp asvaj
-a4 jaaul 07 MO

LC1

321n0g

oA
Gurreog

A108332)

uondusag

dureN

ar

87

B. Appendix

"S99PUD)IE [[€ JOJ SISLATdP SSUTIPIW)
jo anfea a3 pue pajoexnsip 393 aydoad ‘snyy -syueds
-onpaed 119U} JO [[e 03 JUBAI[SI JOU dIe S3UureaW Y} Jo
1SOIN "¢ SSUIIIUL JULJUO Ul SUOLIVAISIP YJ1M [VaP 0F MOL]
:8ET-D JO dSnedaq puey ISYI0 Y} U0 pue ‘;spoyjaul ajl
-8v u1 sagupdn snjvys Jo puviap pasvaioul yjim ap 0j MOp

uor} | :€€I-D O} dNP puey U0 Sy} UO SI SIYJ ,, JUSDYJIUL | ;SSULJaaul uovu
-euIpI00) 2 | oIk s3UrPAW S} JO JSOW ey} dASIRq A[3UOILS [‘Pres | -1p1000 Juadyfour | FEL
VS Wed], [UOedIUNWIWO)) | [I, (TVS 99MIIAIDIUT AQ PISTEI SeM UIdDUO0D ST, | Yjim [vap 0] MO)
" £ S8U1IIUL
UOVUIPA00D JUILIYoUL Y1 (V3P 0§ MOE] FEL-D 0} PINUI]
os[e ST pue s3uneaW IS} JO IN[LA dY} SIONPAI SIY [,
‘paroadxa ueyy 108uo] soxe) Y1om oy J1 ‘aemonred uy | ;spoyjau a8y ul
‘sayepdn snjeys repynre Ym dn swod 0y adoad Sur | sagpdn snyvys Jo
-mssaxd st Suneawr wnidg AJre(] 9y} “SHI0M dINJINTIYD | PUvIUIP pasvaidul | €ET
VS wedl, | A30[opoydN | -Te siy Ut A[Teroadss ‘Jey) pauonuaw 1S 99MITAINU] | Yyjim [Uap 0] MO o)
‘Burdofaasp
arem Aayy jonpoid ayy jo areme uorezrue3io oy jo
SISQUIDUI ISU}0 e 0} I9PIO Ul “}10§jd Surjosrew [eu
-1oyur urerodioour ypm 3ur33nas sem [JA 99MarA Juoy
uon | -193u] ‘padofpasp Buraq Appuarmd are sypnpoid pue | -vziuwvdio ay; ui
-eurp1oo) 2 | spoafoxd yorym jo areme aq ued sUOAIoAd Jou ‘panqryy | Appiqisia paload | TET
1A weido1] [uogedunwwo)) | -SIp pue 931e] SI uoneziue3Io 3Sed Y} ISNeddy | asvaioul 0j MO D
[9Ad]
21nog SGurreog A108332) uondimsag dwreN al

88

B.1. Documentation of Concerns

“SIOM II3Y]} 10J UOT}
-PULIOJUT [EN)XIJU0D Y3nous 393 A3} jey} ains
-ud 03 s19d0ToAdP I0J UISDUOD B OS[e dI0JIIY]} S
3] "7X3JU0D JO SSO € 0} PEI[U}JO UEd JNO , PaId}
-19,, Od Y3 yey3 uoneurioyur 3urssrur 9y ‘sxodo
-[9A9P 10 "UISDUOD STY} PIsTEI (] ddMIIAINUI
OS[e “TOAIMOY] *(SapIS JuaLaffip wioLf Suiuiod sjuau
-aumbau yz1m (pap 03 MOE] :GOT-D 03 PIUI] ST ST,
‘309loxd a3 03 Jue s[RI A[[EN)OR dTE SI9P[OYSEIS
UOTYM WOIJ SUISDU0D YITYM 3ZTU30031 03 O 3}
jo Ayqiqrsuodsar oy os[e I9UNJ ST 3] eSIdA
301A pue ‘apts Juawdooap a3 03 APIs ssaursnq
ay) woy sassed jey) UOIJLULIOJUT JO JUNOWE 3}

$1xa1100
102losd y8noua
wayy Suind

puv siadojaaap

aoue[eq 0} Od 243 Jo Ajiiqsuodsarayy s1if "0d | i fo Surpjarys | LEL
1a weal | ASo[opoyislN | pue zOd Aq paqudsep UIaduod OJ © SI SIYL | 9uvjpq 0j MoL D
‘SpIemIdije I XIj 0} }10JJ9 pue
dwIT) S[RIIPISU0D WdY} 3s00 I ‘}sed ayj ur 3gop
reoruyoa} dn jymq swes} yoq ‘S9[oAd uoneIa ;uoyvLag1 svf
}I0YS 00} pue sIapjoyaeis 9y} woxy assaxd | o7 anp 19ap wow
JO 9snedag ‘FWea] pue guwea] Swed) 9y} woij | -4yoaj dn Suippng | 9€L
1a wed], | A3ojopoyely | syuedonied Aq paqudsap Sem UIDUOD SIYJ, | proav 0§ MOK D
Apnis
SIY} JO awn 9y} Surmp uo JunfIom arom Ay}
309loxd ayy oyurt ‘210z ut parmboe sem jeyy ‘Aued
-wod e jo jnpoid ay ajerdsjur 03 pey [wedy,
‘ATreoyoadg -uonyezruedio ased ayy jo dn-aurf ¢sponpoad
yonpoid Sunsixa ayy yym sponpoid 1oy Sunerd | sy ajpidajur 03
uor} | -9jur JO S}IOJD TeuonIppe Yim awod suonismb | spaloid juapuad
ZIN pue -eurp100) 2y | -oe spyl, ‘sreak uey ised oy Surmp soruedwod | -apur wodf swwvay | GEL
uoyvaiasqO | 9sudiojug [uonedrunuwwo)) | IO Gg 19A0 axmboe prp uonjezruedio ased ayy, | udyy 03 MoK D
[9A9]
adInog Sureog A10833e) uondumsag dweN dal

89

B. Appendix

., Pparoauuoostp 393 aydoad yeys Teuriou st 31 ‘ox1]
eD-odANS e uo yeyy op noA Jr [],, 31 03 UOISUSWIP
[EeOTUD3} B pappe os[e TOJ ddMdraru] , WS ‘[ox}
-U0D I9puUn SIY} dABY },UOp NOA asnedaq “Sunesw 9y}
ur ayedonred A@ierdwod Arear jou [op] Aoy yeys 1997
ued noA [],, 1eY) PAUOTIUSW IS 99MIIAINU] ‘s3ur

UOT) | -}99W 90BJ-0}-90k] UI U} SIOW UDAS SSUTIDIW SUI[UO | ;SSUIJIIUL JULJUO
-eUIpIO0)) 29 | ur pajoensip 3193 03 puay odoad ‘;sSurgaaw uoypuipio | ur - suoovisp | §€L
¥a WedL, |UOREdIUNWIWO)) | -00 jualoyfour yjia [vap 0 MoH HEL-D 03 A[[eUONIPPY | yjia [vap 0] Moy -0
[9Ad]
2Inog SGurreog A108332) uondusag dureN ai

90

B.2. Occurrences of Duplicate Concerns

B.2. Occurrences of Duplicate Concerns

The following table contains the collected data on concerns that we decided to remove or
merge with other concerns. This is intended to give additional information about the data
we collected.

ID Name Category # Percentage

C-103 How to deal with frustration by change despite us- Culture & Mind- 9 60%
ing agile methods? set

C-104 How to deal with highly ambiguous tasks in agile ~Project Manage- 5 33%
methods? ment

C-109 How to ensure that quality requirements are pri- Software Archi- 7 47%
oritized in development work? tecture

C-112 How to avoid developing solutions multiple times Enterprise Archi- 11 73%
in the organization? tecture

C-114 How to deal with urgent bugfix requests? Methodology 4 27%

C-118 How to deal with resistance to introduction of ag- Culture & Mind- 5 33%
ile methods? set

C-131 How to deal with political decisions? Culture & Mind- 7 47%

set

C-123 How to deal with sub grouping due to geographi- Geographical 7 47%
cal distribution? Distribution

C-126 How to deal with lack of social binding between Geographical 8 53%
teams due to geographical distribution? Distribution

C-130 How to deal with people that stick with their way Culture & Mind- 7 47%

of doing things?

set

Table B.1.: List of occurrences of removed or merged duplicate concerns

91

B. Appendix

92

C. Appendix

C.1. Documentation of Good Coordination Practices

C.1.1. Joint Daily Scrum Meeting

Pattern Overview

ID CO-1

Name JOINT DAILY SCRUM MEETING

Alias

Summary Teams that previously worked on independent projects want to in-

tegrate their products. To do so, they are co-located for a limited
period of time and hold a Joint Daily Scrum meeting each day.

Example

Company A and company B are two different companies that have been acquired by the
case organization. They are now intending to integrate two of their products and align
APIs. To get to know the other teams and to establish a common understanding of each
other’s projects, a team of company A is working in the same location as the project teams
of company B for a limited period of time. They hold a Joint Daily Scrum Meeting every
morning to get to know each others workflows and projects.

Context
Teams from independent projects have to work together, or independently developed
products have to be integrated with each other.

Problem

C-1: How to coordinate multiple agile teams that work on the same product?
C-135: How to align teams from independent projects to integrate their products?
C-141: How to coordinate multi-vendor teams?

Forces
® Due to previous independence, the teams do not know each other and the other
project respectively. This can lead to 'not invented here” thinking and communication
problems.
¢ Unless the people get to know each other personally, there will be no active knowl-

93

C. Appendix

edge sharing and coordination between the teams.

Solution

Co-locate the teams at one office for a limited period of time, e.g., one month. Both teams
are skipping their regular Daily Scrum Meetings and should have a Joint Daily Scrum
Meeting instead. This meeting is longer than the normal single-team Daily Scrum Meeting.
By doing this, teams are “forced” to get informed about the progress and impediments of
the other team, respectively. This period of Joint Daily Scrum Meetings should take place
right after the Kick-Off of the integration endeavor.

Variants
The period of time of the Joint Daily Scrum Meetings can be varied as needed.

Consequences
Benefits:
¢ Teams get to know each other personally.
¢ Teams learn about the work processes of each other.
* Questions can be asked directly to the responsible person from the other product
team.
Liabilities:
¢ High expenditure for travel and accommodation.
* Enough office space required to relocate an entire team temporarily.

94

C.1. Documentation of Good Coordination Practices

C.1.2. Refinement Meeting

Pattern Overview

ID CO-2

Name REFINEMENT MEETING

Alias

Summary To avoid communication gaps between different stakeholders that

are working with the project requirements, hold an additional “Re-
finement Meeting” after the Product Backlog has been created and
before the first Sprint is planned.

Example

Context
The stakeholders and the PO have finished the requirements elicitation. The development
of the project is ready to start.

Problem
C-44: How to deal with communication gaps with stakeholders?

Forces

¢ The PO knows what the stakeholders told him, but the rest of the team only gets
“second hand” information through the PO.

e It is hard to establish a common vision of the overall requirements before develop-
ment start.

Solution

Introduce an additional Refinement Meeting after the Product Backlog has been created
and before the first Sprint is planned. In this meeting, the PO and the Software Architect
will explain and discuss the requirements with the whole team. The team discusses, re-
fines, and confirms each requirement.

Consequences
Benefits:
* The requirements are understood by the whole development team.
¢ A common understanding of the requirements is established between PO, architect,
and development team.
Liabilities:
¢ Increases the number of meetings that have to be done before the actual development
work can start.

95

C. Appendix

* Misunderstandings between the PO and the stakeholders are not discovered or re-
solved.

Other Standards

¢ Builds on the product backlog refinement of Scrum [67]

96

C.1. Documentation of Good Coordination Practices

C.1.3. DevCorner

Pattern Overview

ID CO-3

Name DEVCORNER

Alias

Summary DevCorner is an optional meeting, addressing problems of dis-

tributed knowledge and expertise in large-scale agile development.
In the DevCorner developers with required expertise share their
knowledge with others that need information.

Example

Developer John, sitting in the Munich office with Team6, has to utilize a component that
has been developed last sprint by another developer, Jane, who sits with Team8 at the
Montreal office. John requests information about the component via the DevCorner chan-
nel. Jane sees this request and provides the needed information at the next DevCorner
meeting. A colleague of John is interested as well, and joins the DevCorner after he sees
the request by John.

Context
Distributed teams work together on a project or have to utilize each others” products.

Problem

C-1: How to coordinate multiple agile teams that work on the same product?
C-100: How to deal with division of knowledge within and between teams?
C-135: How to align teams from independent projects to integrate their products?

Forces

* Knowledge is not shared automatically between different locations or teams.
¢ If knowledge is shared, this often happens in a person to person way, which leads to
the need of sharing knowledge repeatedly with different people.

Solution

Schedule an optional project-wide, preferably virtual meeting across all locations and for
every development team member. Establish a dedicated communication channel (e.g., a
Slack channel, Confluence page) where developers can request to be informed about topics
they need. Other developers that have the required knowledge can provide it to everybody
that is interested during the DevCorner meeting. The virtual DevCorner can be attended
by developers from all locations.

Variants

97

C. Appendix

The channel through which DevCorner sessions can be requested can be varied according
to organization and project needs.

Consequences
Benefits:
* Avoids that the knowledgeable developer or person has to answer the same ques-
tions over and over again.
e Establishes a straightforward way to request and share needed information.
* The virtual meeting is location independent and can be joined by everybody who is
interested.
Liabilities:
* Success depends on willingness and self-initiative to share information that is re-
quested via the channel.
* A time slot has to be blocked and should not be used for other events, to give every-
body the opportunity to participate in the DevCorner.

98

C.1. Documentation of Good Coordination Practices

C.1.4. Integration Coordination Group

Pattern Overview

ID CO-4

Name INTEGRATION COORDINATION GROUP

Alias

Summary To coordinate the integration of teams that have previously worked

on independent projects, an Integration Coordination Group can be
set up by the organization.

Example

A large software company has acquired two other companies, Company A and Company
B, in recent years. The products of those two companies should now be integrated and
published together in a release. To achieve this, the board sets up an Integration Coordina-
tion Group that includes Development Managers, Product Owners, and Software Archi-
tects of both companies and a Project Manager.

Context

Two products / projects should be integrated or work together in the future. The teams
did not work together in the past and are not familiar (in detail) with the product and pro-
cesses of the other team, respectively.

Problem

C-1: How to coordinate multiple agile teams that work on the same product?
C-135: How to align teams from independent projects to integrate their products?
C-141: How to coordinate multi-vendor teams?

Forces

¢ Integration projects are highly ambiguous. Both sides do not have detailed knowl-
edge about the other side, respectively.

* During the integration process complicated decisions have to be made in line with
the organization’s strategy.

Solution

To achieve successful integration, set up an Integration Coordination Group that includes
at least a Development Manager, POs, Software Architects from both sides, and a dedi-
cated Project Manager. They create a high-level solution architecture (not a technical ar-
chitecture), and define how the integration can be achieved on functional level. The Inte-
gration Coordination Group then creates one team of about 10 people for each product /
project that is part of the integration. Those teams then identify dependencies on develop-
ment level between each other — with the help of the POs and architects — to realize the

99

C. Appendix

defined solution architecture.

Consequences
Benefits:
¢ The Integration Coordination Group can solve the first level of ambiguity.
e The members of the group are aware of the organizations strategy and have specific
knowledge how to take top level decisions in line with the companies’ constraints.

100

C.1. Documentation of Good Coordination Practices

C.1.5. Project Debriefing

Pattern Overview

ID CO-5

Name PROJECT DEBRIEFING

Alias

Summary The Project Debriefing is a meeting, where the management and

other project stakeholders personally explain their reasons to the
development teams for taking an impactful decision. This helps to
avoid misunderstandings and reduces the frustration of the devel-
opment teams.

Example

At the case organization, the Head of Technology holds Project Debriefings with the de-
velopment teams after project scope changes, abortion of projects etc. In these Project De-
briefings the Head of Technology and other stakeholders explain their reasoning for their
decision and how this is embeds in the strategy of the larger organization.

Context
After the project scope changes (drastically), or after a project has been killed exception-
ally. The team shows frustration due to communication reasons or drastic changes.

Problem
C-7: How to deal with doubts in people about changes?
C-81: How to deal with missing communication of decommitment?

Forces

* Due to business strategy and the context of the organization, the focus points can
change. Thus, projects can be killed before finishing with a viable product.

¢ People tend to get frustrated if their work is “thrown into trash” and they do not
know why.

Solution

It is important that the management and other important stakeholders really explain their
reasoning for certain decision they have made. The team should understand why a project
changed so drastically, or why a project is no longer relevant to the organization as a whole.
Therefore, the management and other project stakeholders should hold personal (prefer-
ably with physical presence) Project Debriefings and explain their views to the develop-
ment team. This gives the development team members the possibility to ask questions,
and to understand why the management has made this decision. Miscommunication is
avoided by meeting personally instead of via third parties. Frustration is reduced by clari-

101

C. Appendix

tying the questions directly with the team. The Project Debriefing should take place in the
near time after the decision has been made.

Variants
The way the Project Debriefing is hold, is completely individual.

Consequences
Benefits:

* Reduces the danger of “silent mail” misunderstandings.
¢ Reduces frustration of the development team because they understand the reasoning
behind the decision.
Liabilities:
e Often, it’s very hard to find a time slot where all stakeholders are available to attend
this Debriefing personally.
¢ The Debriefing is necessary shortly after the decision to really be effective.

C.1.6. Representative Exchange

The practice|CO-6: REPRESENTATIVE EXCHANGE|was already presented in the findings in
Section

102

C.1. Documentation of Good Coordination Practices

C.1.7. Project Status Protocol

Pattern Overview

ID CO-7

Name PROJECT STATUS PROTOCOL

Alias

Summary To efficiently use the short overlap times of working hours between

different time zones, a weekly Project Status Meeting is scheduled
where the Product Owners and Scrum Masters sync what their
teams will be doing in the upcoming period. This speeds up daily
communication between time zones in the following days.

Example

At the case organizations Product E it is hard to keep track of who is working on what,
due to the large amount of teams. Because of the sort time zone overlaps, communication
has to be as efficient and direct as possible. The Product Owners and Scrum Masters of the
teams meet in a weekly Project Status Meeting to discuss their teams’ status and what they
will do in the upcoming week. This helps teams to understand whom to address in case of
issues or dependencies and reduces the amount of necessary introduction about the work
when communicating.

Context
Multiple teams are collaborating on a project. The teams are distributed across multiple
time zones. The overlap of working hours is very limited because of the time zones.

Problem
C-83: How to deal with lacking knowledge of another team’s activities?
C-120: How to coordinate work across multiple time zones?

Forces

¢ In multiple-team projects it is hard to keep track of what others are working on.
¢ When communicating with others, often detailed introduction about ones current
work is needed. This takes a lot of valuable time.

Solution

The Project Status Meeting is a meeting between Product Owners and Scrum Masters of
the participating development teams of the project. They agree on a weekly or bi-weekly
meeting schedule. This meeting’s purpose is to exchange information about the status of
the work of each team, and what each team is planning to do in the upcoming period un-
til the next Project Status Meeting. This helps the participants to get an overview, what
is currently happening in the project, and who is working on what. Therefore, through-

103

C. Appendix

out the working period less time has to be wasted on exchanging information about what
the teams are doing. The short available time for communication can be used more effec-
tively for resolving issues and hand-overs between the time zones. This meeting can also
be used for planning of exceptional periods. For example for setting up a week with ex-
tended working hours overlap by arranging one team to come to office earlier and another
team to stay a bit longer.

If a team member feels the need to get more specific knowledge about a certain topic or
wants to share knowledge with others, he or she states so in the Daily. A [M-9: PAIR PRO-|
is set up in the remaining overlap time. During this pairing the two or more
people exchange the information that is necessary to continue the work in the next time
zone.

Variants

It is important to agree on a project wide communication protocol to exchange status up-
dates regularly. Thus, the Project Status Meeting can be scheduled according to the project
needs either weekly or bi-weekly. Also, a clear mechanism should be defined, how infor-
mation is exchanged during time zone overlaps (e.g., [M-9: PAIR PROGRAMMING). This
mechanism can be varied.

Consequences
Benefits:

* Sets a common ground for all teams for the upcoming period.

* Makes sure the teams are aligned and work is distributed evenly in a non-blocking
way.

* Extensive knowledge transfer is provided between the different locations by a de-
fined mechanism.

Liabilities:

e It is the Product Owner’s and Scrum Master’s responsibility to communicate the
results of the Project Status Meeting to the teams. The effectiveness of the Project
Status Meeting, and thus of the whole Project Status Protocol, depends on how well
they transfer the results.

* During the pairing two or more people are working on the same task.

See Also
e IM-9: PAIR PROGRAMMING

104

C.1. Documentation of Good Coordination Practices

C.1.8. Area Retrospective

Pattern Overview

ID CO-8

Name AREA RETROSPECTIVE

Alias

Summary The Area Retrospective is a retrospective that takes place in multi-

team setups after the individual teams held their own retrospec-
tives. Representatives from the teams participate in the Area Ret-
rospective. They discuss problems on above-team levels and how
the teams work together.

Example

At the case organization AC1 is conducting Area Retrospectives to discuss challenges that
individual teams cannot solve. This helps to reflect on how the teams collaborate and how
to improve this collaboration. AC1 uses these Area Retrospectives to help project teams
to improve their collaboration, and also to learn about which challenges regarding agile
methodologies are existing across the organization.

Context
Multiple teams working together on one product. Teams want to improve their collabora-
tion. Teams want to reflect on their processes and possibilities for improvement.

Problem
C-1: How to coordinate multiple agile teams that work on the same product?
C-124: How to implement scaled agile methodologies?

Forces

¢ Retrospectives are often only conducted inside individual teams.
¢ Collaboration between teams needs more coordination and processes than on team
level. These processes can hardly be improved using team level retrospectives.

Solution

The Area Retrospective takes place after each team held their individual team retrospec-
tive. Representatives and Scrum Masters from the teams take part in the Area Retrospec-
tive, as well as an Agile Consultant / Agile Coach. In the Area Retrospective above-team
level problems are discussed, that were raised in the team retrospectives. In the Area
Retrospectives the participants reflect on how the teams collaborate and which processes
work or do not work. They decide how the work and collaboration can be improved and
take the results back to the teams. The Area Retrospective can be run just like a normal
retrospective, but with focus on above-team level processes.

105

C. Appendix

Variants
The way the Area Retrospective is done can be varied. E.g., the [V-4: SAILBOAT RETRO-|
can be used.

Consequences
Benefits:

¢ Teams can reflect about what to improve in their work also on higher levels.
¢ People will be more engaged in the work because they are involved in deciding how
they work together.
* Teams can raise challenges to the area.
Liabilities:
e If the outcomes of the retrospectives are not transformed into actions, people will
become demotivated.

See Also
e [V-4: SAILBOAT RETROSPECTIVE

Other Standards

¢ Large-Scale Scrum (LeSS) [48]
e Nexus [66]

106

C.1. Documentation of Good Coordination Practices

C.1.9. Bug Triage Meeting

Pattern Overview

ID CO-9

Name BUG TRIAGE MEETING

Alias

Summary The Bug Triage is a meeting between the Chief Product Owner and

the Product Owners, where they discuss newly created issues and
bug reports. They judge whether a new bug is actually valid, and
assign them to an appropriate team to fix it.

Example

The Product E of the case organization has been released last year. Since then, it scaled up
to about 30 live customers and 200 sold instances. To deal with the large number of bugs
reported during this after-release scaling period, they set up the Bug Triage Meetings.

Context

Multiple teams working together. In situations after a new product launch / release, when
a lot of bugs are coming in that need to be fixed. Often, a certain reaction time to reported
issues is obligated by contract.

Problem

C-1: How to coordinate multiple agile teams that work on the same product?
C-83: How to deal with lacking knowledge of another team’s activities?
C-85: How to deal with increase in geographic dispersion?

C-95: How to rapidly deliver a necessary patch?

Forces

¢ Inspecial situations, e.g., after a new product launch, often a lot of bugs are reported.

¢ The incoming issues have to be assigned to the teams in a balanced way and accord-
ing to competency.

¢ Ensuring fast reaction times during running sprints is hard.

Solution

Schedule a Bug Triage Meeting to take place two times a week. In the Bug Triage Meet-
ing the Chief Product Owner and the teams’ Product Owners discuss newly created issues
and reported bugs from customers. The meeting can be hosted by any of the Product
Owners, to balance workloads between the Product Owners. They decide whether the re-
ported bugs are valid bugs, whether they have been already addressed elsewhere, or are
‘considered a feature’. If a bug is actually valid, the Product Owner group then decides
which team should take care of the fix based on competency — which team has the required

107

C. Appendix

knowledge to fix it? — and current workload of the teams. The Bug Triage Meeting is used
in scenarios where a lot of bugs are reported from customers.

Variants

Can be combined with the[M-4: FOLLOW THE SUN|practice to ensure quick reaction times.
The schedule of the Bug Triage Meeting can be varied according to the project needs and
volume of incoming bugs.

Consequences
Benefits:
* Product Owners are informed about current issues and which teams are working on
which tasks.
* Incoming bugs can be filtered before development addresses them.
* Bugs are purposely assigned to competent and available teams.
e The reaction time is faster because the reported customer issues are not going through
the normal Sprint Planning procedure.
Liabilities:
¢ Only takes place two times per week. In worst case, a reaction to a reported bug can
take a few days.

See Also
e IM-4: FOLLOW THE SUN

108

C.1. Documentation of Good Coordination Practices

C.1.10. Cross Team Peer Review

Pattern Overview

ID CO-10

Name CROSS TEAM PEER REVIEW

Alias

Summary Any work product has to be reviewed by peers in other teams. Not

only development work is reviewed, but also requirements, user
stories etc. are peer reviewed among the Product Owners. The
reviews are assigned to other peers across teams and locations.

Example

At Product E of the case organization any kind of work product has to be reviewed by a
suitable peer from another team. This helps the seven teams of the project to keep up to
date about what is happening and enforces the principle of dual control.

Context
Multiple teams are working together on a common project / product. Work has to be re-
viewed by peers to ensure good quality.

Problem

C-32: How to deal with lacking team cohesion at different locations?

C-83: How to deal with lacking knowledge of another team’s activities?
C-100: How to deal with division of knowledge within and between teams?

Forces

¢ People tend to ask their team mates and near colleagues to review their work.

¢ In geographically distributed projects and teams, often local sub groups emerge that
confirm and reinforce their local colleagues” work.

¢ Teams often assign their reviews inside the same team which prevents other teams
from getting insights into the ongoing work.

Solution

The Cross-Team Peer Review is different to the normal review process in software devel-
opment. It not only applies to development work, but also to other work such as require-
ments or user stories that are formalized by Product Owners. The work that has been done
has to be reviewed by peers from other teams, and preferably even from another location
as well. This gives the assigned reviewer the possibility to get insights into what the other
teams or colleagues (at other locations) are actually doing.

Variants

109

C. Appendix

The teams should agree on some distribution of the peer reviews. Whether it is across
locations, teams, or even both can be varied.

Consequences
Benefits:
* Knowledge about current work is distributed across teams and locations.
* Other teams have an influence on what is actually merged or added as a requirement.
* Nepotism among teams or local sub groups is prevented.
Liabilities:
e This still only involves one other person from a single other team.
* Reviews take place after the actual work has been done, so misunderstandings are
only discovered after the work has been done.

110

C.1. Documentation of Good Coordination Practices

C.1.11. Distributed Component Leads

Pattern Overview

ID CO-11

Name DISTRIBUTED COMPONENT LEADS

Alias

Summary To ensure that an expert for each feature of the project is avail-

able all the time, Component Leads are distributed and replicated
across time zones or continents. This is done in such a way, that
in every time zone or continent a competent expert is available for
each feature during the local working hours.

Example

The Product E of the case organization was piloting the Distributed Component Leads
practice during the time of this study. Especially because of the short time zone overlap
between the European located teams and the American located teams, they want to have
component leads and experts for each feature in both locations.

Context

The teams working together on a project are geographically distributed. Features are dis-
tributed among the different teams. Component Leads for the different features are only
available during their time zone’s working hours.

Problem

C-1: How to coordinate multiple agile teams that work on the same product?

C-85: How to deal with increase in geographic dispersion?

C-100: How to deal with division of knowledge within and between teams?

C-107: How to deal with slow reactions of other teams or people in case of dependencies?
C-120: How to coordinate work across multiple time zones?

Forces

¢ Features are developed by teams. Thus, the team that developed it is a centralized
expert-team about this feature.

¢ Teams in other time zones face problems in communicating and access the knowl-
edge of these experts.

Solution

Multiple Component Leads are assigned for the different components and features of the
project. The Experts are distributed across the different time zones and continents where
the project’s development teams are sitting. The distribution is done in such a way, that in
every time zone and in every continent, there is always a local Component Lead available

111

C. Appendix

for each feature during the local working hours. This ensures every development team
has access to experts for the features of the project. It reduces the waiting times in case of
dependencies to other features.

Consequences
Benefits:
¢ Response times in case of knowledge requests or dependencies to other teams are
reduced, because an expert is always available.
Liabilities:
¢ There may still be one main expert / expert team that has developed the component
and has the most deep knowledge about it. This practice stands in contrast to the
concept of teams “owning” features.

112

C.1. Documentation of Good Coordination Practices

C.1.12. Milestone Planning

Pattern Overview

ID CO-12

Name MILESTONE PLANNING MEETING

Alias

Summary The Milestone Planning Meeting is a meeting between the Chief

Product Owner and the teams” Product Owners. In the Milestone
Planning the Product Owners discuss what should be achieved in
the upcoming two to four sprints.

Example
The product area of AC1 is planning and distributing their work across teams using the
Milestone Planning Meeting.

Context
Multiple teams working together on a project. The work has to be planned and distributed
to the teams by the Product Owners.

Problem

C-1: How to coordinate multiple agile teams that work on the same product?
C-83: How to deal with lacking knowledge of another team'’s activities?
C-125: How to plan work and track progress?

Forces

¢ It is not easy for Product Owner to keep the overview of what is going on in other
teams.

¢ Centralized coordination and planning of all the teams” work is complicated for the
Product Owners and the Chief Product Owner.

Solution

The Milestone Planning is a planning event in which the Chief Product Owner and the
Product Owners of the individual teams take part. Before the Milestone Planning takes
place, the Chief Product Owner defines a “theme” or common goal for the whole project.
This theme will be the objective of the upcoming period (usually 2 to 4 sprints). The team
Product Owners select possible work for their teams according to the theme that has been
defined by the Chief Product Owner. After that, the Product Owners consult with their
development teams on whether the selected work is achievable. The team estimates the
proposed work packages in story points. Finally, after all Product Owners selected work
and the teams estimated it, the Milestone Planning meeting is held by the Chief Product
Owner with all the Product Owners. In the Milestone Planning Meeting the Product Own-

113

C. Appendix

ers discuss the planned work and the estimates of the teams. If adjustments are needed,
they can be done in the meeting. Workloads might be moved to other teams that do have
more capacity.

Variants

This pattern was also described with a longer planning period of a quarter. Thus, the Mile-
stone Planning Meeting can also be conducted quarterly.

The Scrum Masters may also take part in the Milestone Planning to represent the develop-
ment team and their concerns.

Consequences
Benefits:

* The Product Owners know what is being worked on in all the teams.
* The workload is balanced between the teams.

See also

e [V-1. ROADMAP
e V-3: MILESTONE PLANNING BOARD

114

C.1. Documentation of Good Coordination Practices

C.1.13. Coffee Corner Meeting

Pattern Overview

ID CO-13

Name COFFEE CORNER MEETING

Alias

Summary The Coffee Corner is an informal meeting. Top-level management

members visit an office of the organization and sit together with
interested employees for a cup of coffee.

Example

At the case organization’s office in Munich, Coffee Corner sessions are held. They are held
in an irregular schedule whenever a board-level or high-level manager is available at the
location or visiting.

Context
Direct communication between top-management and employees holds valuable informa-
tion for both sides.

Problem
C-65: How to deal with office politics?
C-142: How to deal with decisions on higher levels reaching lower levels?

Forces

¢ Top-management is often located at the headquarter of an organization.
¢ Top-management is hardly contactable in large organizations.

Solution

The Coffee Corner is an informal meeting where top-level management members visit an
office of the organization and sit together with the employees for a cup of coffee. The
managers give an overview about general news in the company (e.g., restructurings, re-
cent events and demos, etc.). The session should be held in an interactive way to ensure
bi-directional communication. There should also be a Skype-Meeting going on besides the
physical meeting, to enable everybody to join the session.

Variants
The session can be held with or without presentation slides by the manager.
The session can take place in the coffee corner of the office or in any other location.

Consequences
Benefits:

115

C. Appendix

* Information is passed to the employees directly from the high-level management.
¢ People can ask direct questions to management.

Liabilities:
* Top-Level managers often do not find the time to host Coffee Corner sessions regu-
larly.

116

C.1. Documentation of Good Coordination Practices

C.1.14. Lunch Talk

Pattern Overview

ID CO-14

Name LUNCH TALK

Alias

Summary The Lunch Talk is a presentation during the lunch break, where

members of the organization present their projects and share infor-
mation about what is going on in their teams.

Example

Interviewee M1 and one of the teams of Product C are working on a new log analysis so-
lution. He wants to share his knowledge and draw attention of colleagues to this project,
because he thinks it might be useful in other projects of the organization. He gives a lunch
talk, where he can explain his project to interested colleagues, in a warm atmosphere over
some pizza.

Context
People need to be aware of internal projects in order to utilize them. In large organizations
employees cannot be aware of all projects that are going on.

Problem

C-83: How to deal with lacking knowledge of another team’s activities?
C-100: How to deal with division of knowledge within and between teams?
C-132: How to increase project visibility in the organization?

Forces

* Knowledge about new projects does not automatically spread across the organiza-
tion.

¢ Sharing knowledge via wiki pages or newsletters often does not draw attention of
colleagues from other projects.

Solution

Set up a Lunch Talk series at the company’s different office locations. The events of the se-
ries should take place during lunch time. There should be the possibility to have lunch dur-
ing the presentation. To increase attractiveness, consider offering drinks or food. Project
teams or members of project teams can schedule talks in this series, in which they inform
the participants about what they are currently developing and how others can utilize this
in their projects. The atmosphere should be casual.

Variants

117

C. Appendix

Consider offerings like drinks or food during the lunch talk to increase attractiveness for
attendees.

Consequences
Benefits:

e Participants are informed about new projects and how they can utilize them.
* Questions can be pointed directly to the presenter of the project team.

Liabilities:
* More effort than a wiki page or an email newsletter.

118

C.1. Documentation of Good Coordination Practices

C.1.15. Further Coordination Pattern Candidates

ID Name & Problem Summary

CO-15 | OPEN WORK AREA The open work area of the organizations” office in
C-134: How to deal | Munich contributed considerably to the communi-
with inefficient coordina- | cation of employees. Interviewee SM1 pointed out
tion meetings? that the work space reduced the need of scheduled

meetings for him as it is easier to walk over to col-
leagues to resolve small issues. Therefore, the open
work area is also linked to the ad hoc communica-
tion.

CO-16 | INSTANT MESSAGING | The organization was using an instant messaging
C-121: How to deal with | service for asynchronous personal and topic related
not being able to physi- | communication. Each team maintained its own
cally sit together in dis- | group in the messaging service and general topic
tributed teams? groups (e.g., product related groups) were main-

tained by administrators of the organization.

CO-17 | ONLINE FORUM Additionally to the instant messaging the organiza-
C-121: How to deal with | tion also maintained an online question and answer
not being able to physi- | forum. This online forum could be used by em-
cally sit together in dis- | ployees to discuss a variety of topics (such as devel-
tributed teams? opment work or organizational topics), coordinate

workshops, share presentation slides and more.

CO-18 | Ab Hoc COMMUNI- | A lot of communication and work coordination was
CATION done ad hoc at the observed teams. People would
C-134: How to deal | just talk to each other to clarify things when they
with inefficient coordina- | met on the floor or in the coffee corner. Unscheduled
tion meetings? meetings were held on a daily basis between two or

more persons.

CO-19 | DAILY STANDUP | The team conducts a Daily Standup Meeting ev-
MEETING ery morning. It usually takes around 20 minutes.

C-111: How to keep the
team focused on the larger
context and project goals?
C-122: How to deal with
unexpected dependen-
cies?

The meeting is used to inform other team members
about ones current status and impediments. In case
of unexpected dependencies the team consults on
how to resolve them. The meeting helps keeping all
team members informed about what others are do-
ing at the moment.

Other Standards: Scrum [65]]

119

C. Appendix

ID Name & Problem Summary
CO-20 | SPRINT RETROSPEC- | All observed teams at the case organization used a
TIVE MEETING Sprint Retrospective Meeting to recap on the work
C-39: How to establish | processes of the previous sprint. The team identifies
a culture of continuous | what went well, what needs to be improved, and
improvement? how this improvement can be achieved for the up-
coming sprint.
See Also: [AP-1: RANTROSPECTIVE] [V-4: SAILBOAT|
RETROSPECTIVE
Other Standards: Scrum [65]
CO-21 | SPRINT REVIEW MEET- | The team conducts a Sprint Review Meeting after
ING a sprint has been completed. The created product
C-125: How to plan work | increment is examined in detail. In larger projects,
and track progress? this meeting is also often used to demo each newly
created feature to all the team members. The team
revisits what has been achieved, what could not be
finished in the past sprint, and adapts the product
backlog if needed.
Other Standards: Scrum [65]
CO-22 | SPRINT PLANNING | The team conducts a Sprint Planning Meeting be-
MEETING fore a new sprint is started. The team sits together
C-125: How to plan work | and decides which tasks from the Product Backlog
and track progress? should be pulled to the sprint backlog for the next
sprint. The Sprint Planning Meeting is also often
used for organizational issues like planning travel
between locations.
Other Standards: Scrum [65]
CO-23 | IsSUE TRACKING TOOL | The Product Backlog and the Sprint Backlogs are

C-125: How to plan work
and track progress?

documented and maintained in a dedicated tool. All
Scrum team members have access to the tool. Back-
log items can be assigned to one or more person us-
ing the tool.

120

C.2. Documentation of Good Methodology Practices

C.2. Documentation of Good Methodology Practices

C.2.1. Mono-Repo

Pattern Overview

ID M-1
Name MONO-REPO
Alias Single Repository
Summary To reduce dependencies between multiple teams working on the
same product, the entire codebase of the product is kept in one
place.
Example

The teams of Product A at the case organization decided to run the newly set up project in
mono-repo mode, to facilitate reuse of components and code from the ground up.

Context

Projects usually are separated into components. The components are depending on each
other. The components are developed by different / multiple teams. Work has to be some-
how separated between teams.

Problem

C-1: How to coordinate multiple agile teams that work on the same product?
C-34: How to ensure the reuse of enterprise assets?

C-83: How to deal with lacking knowledge of another team’s activities?
C-122: How to deal with unexpected dependencies?

Forces

¢ Not every team can have full knowledge about how solutions from other teams work
and what exactly they have developed.

¢ The components developed by different teams have to work together in the end. Not
every progress step can be tested with all other components.

Solution

Keep all the codebase for all the components for a project in one repository. This re-
duces the impact of dependencies between components, as interfaces might not have to
be mocked anymore. Code that has already been developed in another component can be
reused easily. Dependencies, integration errors, or failures can be discovered earlier.

Variants
The structure of the mono-repo should be adjusted to the structure of the project and

121

C. Appendix

teams.

Consequences
Benefits:
* Reduces code redundancies between components.
Makes code easier to search.
Helps to discover dependencies earlier.
* Integration of components is easier and can be tested earlier / quicker.
* Errors / wrong development can be discovered earlier.
Liabilities:
* The repository can get very huge, good structuring is needed.

Known Uses
Besides the case organization, this practice is also used at other organizations, e.g., Google
[57]] and Facebook [34].

122

C.2. Documentation of Good Methodology Practices

C.2.2. Mixed Sprint

Pattern Overview

ID M-2

Name MIXED SPRINT

Alias

Summary In situations where a team has to help out another independent

team for a short time, the helping team can collect tasks in a sep-
arate Epic item. The team then carries out Mixed Sprints for this
short time span, during which they work on work-items from their
own project, as well as from the other project they are helping out.

Example

Team?2 was working on the Product B project when they had to help out on another team’s
project. The other team had difficulties meeting their deadline. They decided to run mixed
sprints for this period of time to avoid additional organizational overhead.

Context
A team needs help from another team on some of their tasks. The time span for which the
help is needed is limited from the beginning on.

Problem

C-1: How to coordinate multiple agile teams that work on the same product?
C-79: How to synchronize sprints in the large-scale agile development program?
C-127: How to meet release dates?

Forces

¢ The helping team has its own workflow and tool setup. Adjusting the setup of the
helping team is a lot of overhead work which will be useless after the limited time
span.

* Because the help is needed urgently, there might not be enough time to setup a new
workflow and toolset for the collaboration.

Solution

The helping team creates a separate Epic in their work items. This separate Epic contains
all the tasks that are related to the other team’s project that needs the help. The helping
team carries out mixed sprints in which some of the developers are assigned to the tasks
of the other project. The other developers keep on working on the team’s own project.

Variants
Can be combined with a reduction of sprint lengths to reduce the reaction time of the help-

123

C. Appendix

ing team to changing information.

Consequences
Benefits:
¢ Reduces the time that is needed until the helping team can start contributing to the

other project.
* The helping team does not have to adjust to a new workflow and toolset but can

continue using the known methods.
Liabilities:
* The project space (Scrum board etc.) of the helping team contains items not related
with their actual project.

124

C.2. Documentation of Good Methodology Practices

C.2.3. Assigning Rights

Pattern Overview

ID M-3

Name ASSIGNING RIGHTS

Alias

Summary To ensure the acceptance of the persons in the roles of Scrum Mas-

ter and Product Owner, they are assigned additional rights and re-
sponsibilities. They allow them to maintain their position and take
decisions.

Example

At the Product Areas A and B the Scrum Masters and Product Owners are assigned the
right to setup the Scrum Teams and Methodology on their own. Further, the Scrum Mas-
ters can also intervene the Software Manager in personnel questions, e.g., if the Software
Manager is moving developers between projects. The Scrum Master and Product Owner
are considered leadership roles.

Context
In the Scrum standard the team is designed completely democratically, all members of the
team are seen as equal.

Problem
C-113: How to ensure acceptance of Product Owner and Scrum Master by the team?

Forces

¢ Scrum Master and Product Owner have to instruct others, but do not have authority
towards the team.

¢ The Scrum Master has to handle impediments of the team, but has no additional
rights than a developer.

Solution

To make sure the Scrum Master and the Product Owner are accepted by the team, they are
assigned additional rights and responsibilities by the Manager. Therefore, they can work
effectively with the teams and ensure the teams’ integrity. These rights can include (but
are not limited to):

* Setup the team how they think is right for the project (even disregarding the team’s
opinion).

¢ The Scrum Master can intervene the Software Manager in personnel questions.

® The Scrum Master can direct a developer how to do something in cases where no
democratic solution is found in the team.

125

C. Appendix

Those additional rights and responsibilities deviate from the Scrum standard. They have
to be documented somehow, in order to make them comprehensible.

Variants
The exact additional rights that the Scrum Master and Product Owner are assigned can be
varied. Further, the way how these rights are documented can be varied as well.

Consequences
Benefits:

¢ Scrum Master and Product Owner are clearly defined as leadership roles.
* They have additional ‘handles’ to deal with special situations and to make decisions.

Liabilities:
¢ The democratic approach of Scrum is modified.
¢ Additional hierarchy is added.

C.2.4. Follow the Sun

The practice[M-4: FOLLOW THE SUN|was already presented in the findings in Section[4.4.1}

126

C.2. Documentation of Good Methodology Practices

C.2.5. ShipCaptain

Pattern Overview

ID M-5

Name SHIPCAPTAIN

Alias

Summary To have somebody who is able to make global decisions in a

multiple-team setup, the ‘Ship-Captain” role is introduced. This
role is filled by a manager that can make global decisions and
override decisions of sub-teams and the Product Owner & Product
Manager. The roles purpose is to ensure the program is moving in
the right direction.

Example
The case organization has a multi-team setup on Product A. To ensure that the whole
program is moving to the right direction and meets the deadlines, they introduced a Ship-
Captain.

Context
Multiple-team setups where critical deadlines have to be met.

Problem

C-80: How to deal with a competing concept deadlock?
C-115: How to take decisions in multiple-team setups?
C-127: How to meet release dates?

Forces

* No clear decision taker is defined in multiple-team setups.
¢ Product Owner, Product Manager, and teams might want to go different directions
or take contradictory decisions.

Solution

To ensure that the team is moving in the right direction and will meet deadlines, a new
role of a ‘Ship-Captain’ is established in the multi-team setup. This role is placed at the
multi-team level and can take decisions — even if they might be wrong. Its purpose is to
ensure the teams are not blocked. The Ship-Captain can also override decisions of the
Product Owner and sub-teams if there are reasons for this (like cost, resources etc.). Fur-
ther, the Ship-Captain can also approve urgent budget requests by the team (to a certain
extent) without adhering to the corporate approval procedure. The Ship-Captain is as-
signed pretty high responsibility and should be filled e.g., by a manager.

127

C. Appendix

Consequences
Benefits:

* Clear responsibilities for steering the program.
* Deadlines are watched and ensured by the Ship-Captain.
* Decisions can be taken very quickly if needed.

Liabilities:
* Product Owner and team decisions might be disrespected.

C.2.6. Sprint Zero

The practice[M-6: SPRINT ZERO|was already presented in the findings in Section[4.4.3|

128

C.2. Documentation of Good Methodology Practices

C.2.7. Dedicated Person to Deal with Annoyments

Pattern Overview

ID M-7

Name DEDICATED PERSON TO DEAL WITH ANNOYMENTS

Alias

Summary To reduce the distractions of the developers during an ongoing

sprint, a person is dedicated to dealing with unexpected annoy-
ments during each sprint. This role is rotating across the develop-
ment team members to keep frustration low.

Example

The Team4 has a rotating role that is assigned to another developer each sprint. This de-
veloper has to deal with technical issues during the sprint that cannot be handled by the
Scrum Master, in order to keep the rest of the team focused on the sprint.

Context

Unexpected issues are coming up during sprints. Organizational topics have to be dis-
cussed during a sprint. However, developers should be able to concentrate on the assigned
tasks during the Sprint.

Problem
C-95: How to rapidly deliver a necessary patch?
C-119: How to deal with issues that interrupt the sprint?

Forces

¢ The team cannot control when the requests are coming in.

¢ The Scrum Master cannot deal with all the technical requests on his/her own.

¢ Organizational topics and calls are often necessary to clarify immediately for the next
work steps.

Solution

During each sprint, dedicate one specific developer of the team to deal with the incoming
requests. This person is assigned the role to handle incoming annoyments, requests, and
calls that cannot be handled solely by the Scrum Master. Preferably, this dedicated person
is a developer who knows the technical details of the project. The role of the annoyments
handler is rotating across the development team members to avoid one member getting
frustrated by this job. Otherwise, frustration might occur because the role reduces the per-
son’s productivity on the project.

Variants

129

C. Appendix

The rotation scheme of the role can be varied. The important point is to actually have a
rotation, to avoid team members getting frustrated by this role.

Consequences
Benefits:
e The development team can really focus on the sprint tasks and does not have to deal
with these requests.
* The Scrum Master is assisted by a technically experienced person.
Liabilities:
¢ The dedicated person does not get to the main job and is less productive during this
sprint.

130

C.2. Documentation of Good Methodology Practices

C.2.8. Requirement Separation

Pattern Overview

ID M-8

Name REQUIREMENT SEPARATION

Alias

Summary To stay productive despite changing project requirements, the team

separates tasks that are very dependent on specific requirements
and such tasks that are rather independent from the detailed re-
quirements. Focus is kept on the former in the beginning phase of
the project.

Example

The requirements of the initial project of Team1 changed severely multiple times, because
upper management had no clear vision of the project in the beginning. The team got demo-
tivated. This was addressed through the Scrum Master and Product Owner, by focusing
on tasks that were not deeply dependent on the exact requirements, but rather on the gen-
eral scope of the project. This helped to avoid “throwing finished work into trash” each
time requirements changed.

Context
The customer has no fixed vision of the project. Requirements are not clearly defined by
the customer.

Problem

C-7: How to deal with doubts in people about changes?

C-101: How to keep the team motivated despite frequent, severe changes in requirements?
C-116: How to deal with an existing development team before requirements are existing?
C-137: How to balance shielding of the developers and giving them enough project context?

Forces

¢ Teams repeatedly do work for the “trash” because requirements can always change.
¢ Teams get demotivated because of this and lose trust in the project and in themselves.

Solution
Separate tasks from the task-board into two categories:
¢ Tasks that are tightly linked with specific requirements.
¢ Tasks that are (almost) independent from specific requirements or business decisions.
This can be tasks such as setting up the deployment pipeline, learning a required
programming language, setting up the test environment etc.

Keep the focus on the tasks that are not dependent on decisions from business or cus-

131

C. Appendix

tomers, especially in the beginning of the project. The work done for these tasks is more
likely to still be valuable for the project even after requirements changed.

Variants

The Task Separation is a very project specific practice. It depends on the Scrum Master
and especially the PO to identify tasks that are not as requirement-specific as others. These
tasks may vary from project to project.

Consequences
Benefits:
* Work results can be utilized even after requirements changed.
¢ Team stays motivated.
¢ Team can adapt more quickly to new requirements.
Liabilities:
* Additional effort for categorization of tasks.
* Depends on PO to judge which tasks are not tightly linked to specific requirements.

132

C.2. Documentation of Good Methodology Practices

C.2.9. Further Methodology Pattern Candidates

ID

Name & Problem

Summary

PAIR PROGRAMMING
C-32: How to deal with
lacking team cohesion at
different locations?
C-120: How to coordinate
work across multiple time
zones?

C-134: How to deal
with inefficient coordina-
tion meetings?

Pair programming has been mentioned as a useful tool
of regular use by interviewees from all three product
areas. Especially for knowledge sharing and provid-
ing feature specific help across different locations and
teams. The pair programming technique was used as a
direct person to person coordination mechanism. This
was enabled by video conference and screen sharing
tools used at the organization.

Other Standards: XP [4]

133

C. Appendix

C.3. Documentation of Good Viewpoint Practices

C.3.1. Roadmap

Pattern Overview
ID V-1

Name ROADMAP

Alias

Summary The Roadmap is a document maintained by the Product Owner.
It intendeds to bridge the communication between business stake-
holders and the development team. The Roadmap contains rows of
"Roadmap Artifacts’. The Product Owner also documents potential

high-level risks.

Q3/2019
Roadmap Artefact

GA release

* Commercialisation/ pricing - I
—

* Name approval - official name as Il required for commercialisation.

Open questions:

® Should this release be done from N to the customers directly, or can this be

intge

Integration with (I

Actions depending on this decision:

SLA and SLO for the service
Integration with SRE

.
.
® Customer support - BCP component requested and available since June 2019.
® Architectural changes - migrate to Kubernetes

Open questions:

*® Is additional migration needed to integrate with SRE? The effort should be reduced as SRE

already manages|

® s customer support handled individually by the products or in a single portal for the
?

® Should we have our own Kubernetes cluster or should we share |
]

I integration - [l as a feature
* Depending on POC results the [l feature is to be customised as per (il requirements.
® Architectural discussions to analyse and design the feature flow.

Feature: Multiple I
* One goal of the service is to provide the benefit of multiple |l Il to the customer.

This feature will allow customer to select or switch to the | N Il of their choice.
® This new feature will also include research on metering options for the

implementation.

Related Jira Epics Risks

I - Abrufen der

Vorgangsdetails...
STATUS

I - Abrufen der

Vorgangsdetails...
STATUS

I /\brufen der

Vorgangsdetails...
STATUS

Figure C.1.: Roadmap quarter as maintained by the interviewee PO2

Example

134

C.3. Documentation of Good Viewpoint Practices

Interviewee PO2 of Team?2 is maintaining a Roadmap for Product B. The Roadmap is struc-
tured quarterly and contains the upcoming four quarters. A screenshot of one quarter is

shown in Figure

Context
Stakeholders have to be informed about what the other stakeholders are doing. The busi-
ness side does not want to have to look inside the issue tracking tool which the devel-
opment side is using. The development side wants to have an overview of the project’s
horizon.

Problem
C-44: How to deal with communication gaps with stakeholders?

Forces

* The Product Owner has to decide which information to pass from the business stake-
holders to the development team and vice versa.

* The Product Owner has to ensure transparency and prioritization of overall goals to
both, the business side and the development side.

Solution

The Roadmap is a document maintained by the Product Owner. It intendeds to bridge the
communication between business stakeholders and the development team. The Roadmap
contains rows of “Roadmap Artifacts”. Each Roadmap Artifact can be linked to a concrete
Epic. The Product Owner also documents potential high-level risks (i.e., not development
risks but risks like architectural change or timeline risks). This document is intended to
inform all the stakeholders about the current status of the project, upcoming features, and
potential risks. Therefore, it facilitates the Product Owner in his task to coordinate and
communicate the requirements of the business to the team, and to inform the business
about the project status.

Variants
The Roadmap should be accessible to all stakeholders. Depending on the project the
Roadmap can be structured quarterly or using other time spans.

Consequences
Benefits:
¢ The PO has a place to document the project status.
¢ Both sides (business and development) can find links to the respective other side’s
resources (e.g., Epic links, requirements documentation).
¢ Prioritization can be clearly indicated.

Liabilities:

135

C. Appendix

¢ Adds another document that has to be maintained and updated.

Data Collection

Roadmap

PlanningPeriod RoadmapArtifact

+ startDate: Date : + name: String
+ endDate: Date lconta|1ns + description: String
+ name: String N =M 14 risks: String

0..n

related Epics
0..m

ProjectEpic

Figure C.2.: The data model for the Roadmap

The Roadmap is maintained by the Product Owner in such a way, that all stakeholders of
the project / product can access it. It is updated whenever progress on the Roadmap has
been achieved or a new period is added on the horizon. The data model for the Roadmap

is shown in Figure

136

C.3. Documentation of Good Viewpoint Practices

C.3.2. Task Dependency Mapping

Pattern Overview

ID V-2

Name TASK DEPENDENCY MAPPING

Alias

Summary The Task Dependency Mapping is created to visualize the depen-

dencies between sub-tasks of a task. It helps to efficiently utilize the
whole team’s capacity to resolve an urgent issue, or an issue that
is blocking other tasks from progressing. It splits the issue in sub-
tasks and provides an overview of dependencies, work allocation
to the team members, and necessary handovers.

Example

Team5 used a Task Dependency Mapping after a team member went on holiday. The
other members had to resolve his current task very quickly because they were depending
on it. The mapping they created visualizes which sub-tasks of the job can be separated and
assigns individual people to those sub-tasks. Further, the mapping visualizes the depen-
dencies between the sub-tasks and who has to handover his work or results to whom, in
order to quickly resolve the issue.

Context
An (unexpected) dependency between tasks is discovered during a sprint that is blocking
team members from continuing their work.

Problem

C-95: How to rapidly deliver a necessary patch?

C-121: How to deal with not being able to physically sit together in distributed teams?
C-122: How to deal with unexpected dependencies?

Forces

* Not every dependency can be foreseen before a sprint is started.
¢ If something is very urgent it is not easy to use the whole capacity of the team effi-
ciently for resolving that issue.

137

C. Appendix

Solution
Locationl: Assignee3 Locationl: Assigneel Locationl: Assigneel
Location2: Assignee4 Location2: Assignee2 Location2: Assignee2
Sub-Task 1 Sub-Task 2 > Sub-Task 3

Urgent
Issue

Figure C.3.: Task Dependency Mapping

To deal with a blocking dependency between tasks or an urgent issue, divide the issue into
sub-tasks. Assign the sub-tasks to different team members to parallel the work as much as
possible. Dependencies and needed handovers between sub-tasks have to be visualized.
This helps team members to know whom to inform about the progress and enables devel-
opment across time zones. A generic version of a dependency mapping is shown in Figure
The status of sub-tasks is indicated by color-codes (coloring the sub-tasks in different
colors).

Variants

The Mapping can be created on any board that is accessible to all involved team members,
e.g., an online collaboration tool.

It can also be useful to apply the Task Dependency Mapping together with the
practice, to visualize handover scenarios of (depending) tasks across time

zones.

Consequences
Benefits:
* The capacity of the team is used efficiently to get blocker dependencies out of the
way.
¢ All depending / blocked team members can help to work on the blocker.
* Organizational things (e.g., order and handovers) are clearly defined.

Liabilities:

138

C.3. Documentation of Good Viewpoint Practices

¢ Involves detailed upfront planning by Product Owner and Scrum Master.

See Also

o [M-Z FOLLOW THE SUN

Data Collection

Task

g

consists of

TeamMember

Location

1..n

assigned to
1..n

SubTask

1..%

0..n
depends on

Figure C.4.: Data Model for the Task Dependency Mapping

The Product Owner and Scrum Master collect the necessary information about how the
task can be split into sub-tasks. They assign the sub-tasks to developers in such a way that
with the help of handovers the working time is maximized. The data model for the Task
Dependency Mapping is shown in Figure

139

C. Appendix

C.3.3. Milestone Planning Board

Pattern Overview

ID V-3

Name MILESTONE PLANNING BOARD

Alias

Summary The Milestone Planning Board is used by the Product Owners dur-

ing the Milestone Planning Meeting. It is used to explain and doc-
ument the planned work and the estimates by the teams.

Example

The product area of AC1 is planning and distributing their work across teams using the
|CO-12: MILESTONE PLANNING MEETING| To keep track of who is planning to do what,
how the teams estimate the effort, and how work could be reallocated, the Product Owners
document the outcomes of the Milestone Planning Meeting in an Excel implementation of
the Milestone Planning Board.

Context

The Milestone Planning Meeting is implemented in the organization to plan work in projects
with multiple teams. The Product Owners discuss what they plan to implement in the up-
coming sprints and explain how their teams estimate the effort.

Problem

C-1: How to coordinate multiple agile teams that work on the same product?
C-124: How to implement scaled agile methodologies?

C-125: How to plan work and track progress?

Forces

¢ Work planning across multiple teams is complicated and time consuming.

¢ The Product Owners have to know what is going on in other teams and document it.

¢ The Milestone Planning Meeting is only attended by Product Owners. Other project
members should be able to review the outcomes of the Milestone Planning Meeting.

140

C.3. Documentation of Good Viewpoint Practices

Solution
Owner | Feature Issue link Area/SIG/WG Teaml Team2 Team3
Enable using a
PO1 default messaging https://github.com/some- area/installation, 32
middleware other project/issues/7845 area/documentation !
than NATSS

Figure C.5.: Milestone Planning Board

The board is organized in a table format as shown in Figure For each feature that
a Product Owner wants to implement for the upcoming theme, a row is added to the
Milestone Planning Board. Each row contains information about the responsible Product
Owner, the feature the Product Owner wants to implement in the upcoming theme, a link
to the development ticket, area categorization of the feature, and the estimates of the teams
that will be involved in the development of this feature.

Variants

The board can be maintained in any feasible way that is accessible to team members. The
observed organization created the board using an Excel file, but it can also be done with
other tools.

Consequences
Benefits:

¢ All Product Owners can see what other teams are doing.
* The work estimation and features are documented.
* Other stakeholders can review the outcomes of the Milestone Planning Meeting.
Liabilities:
¢ The document can get pretty large very quickly, because all teams and all features
for the upcoming theme are listed.

See Also
o -12: MILESTONE PTLANNI EETI
Data Collection

The data is filled out by the Product Owners. They collect the necessary data in advance
of the Milestone Planning Meeting together with their teams. They prepare the Milestone
Planning Board before the actual meeting takes place.

141

C. Appendix

C.3.4. Sailboat Retrospective

Pattern Overview

ID V-4

Name SAILBOAT RETROSPECTIVE

Alias

Summary The Sailboat Retrospective is a visualization practice to visualize

the Wind, Anchors, and Rocks that the team encountered during the
last sprint.

Example

Sailboat

Wind: Anchors Rocks

What's moving (propelling) What slows us down? Obstacles and risks that
ou forward? What are the impediments? could hinder

Figure C.6.: Sailboat Retrospective Template used by interviewee AC1

Figure shows an example template of the Sailboat Retrospective that is used by inter-
viewee AC1.

142

C.3. Documentation of Good Viewpoint Practices

Context

Scrum teams run a Sprint Retrospective after each Sprint. In the Sprint Retrospective the
team members reflect on their work processes and discuss how they could improve their
collaboration.

Problem
C-39: How to establish a culture of continuous improvement?
Could also be seen as a revised solution for|AP-1: RANTROSPECTIVE

Forces

¢ People tend to forget about the outcomes without documentation.
¢ Without distinction between types of points that are raised in a retrospective, it is
hard to deduce suitable actions to improve.

Solution

The template for the Sailboat Retrospective that is used by interviewee AC1 can be seen
in Figure The visualization should contain the following three areas to place (virtual)
post-its on:

¢ Wind: What's moving (propelling) you forward?
¢ Anchors: What's slowing you down? What are the impediments?

¢ Rocks: Obstacles and risks that could hinder

Variants

The way how the Sailboat visualization is created can be varied. It can be created physi-
cally on a whiteboard with real post-its. But it can also be maintained in an online collab-
oration tool to use it with distributed teams.

Consequences
Benefits:
¢ The team reflects on processes and possible improvements.
¢ The template is not as tempting for [AP-1: RANTROSPECTIVE|as the normal scheme
for retrospectives.

See Also
e |AP-1: RANTROSPECTIVE

Data Collection
The Sailboat visualization is created collectively by the team during the Sprint Retrospec-

143

C. Appendix

tive Meeting. Every team member can add (virtual) post-its to the three categories to ex-
press what they think about the previous sprint. The host of the Retrospective (Scrum
Master or Agile Coach) takes care of archiving the document afterwards and creating the
resulting items / tasks.

C.3.5. Team Homepage

The viewpoint practice |V-5: TEAM HOMEPAGE| was already presented in the findings in
Section4.4.71

144

C.3. Documentation of Good Viewpoint Practices

C.3.6. Persona

Pattern Overview

ID V-6

Name PERSONA

Alias

Summary It is important to describe the target Personas as early as possible in

the project. The Persona descriptions should be documented and
be accessible for every stakeholder.

Example
The Personas for Product E are documented in the project’s wiki pages and are also phys-
ically hanging at the office walls in form of large posters.

Context

The development team should know as early as possible whom they are actually targeting
with their project. The better the target user is described, the better the product can be
designed for this user.

Problem
C-15: How to elicit and refine requirements of end users?

Forces

e [tis hard to get a common understanding of the actual user of the product.
* Products cannot be designed properly if the end user is not known to the develop-
ment team.

Solution

Create Persona documentations and make them accessible to all stakeholders of the project.
A Persona with the required fields is illustrated in Table The Persona should contain
a caption that summarizes the described character in one sentence, a name to “personalize’
the Persona, and the role name. Further, the Persona should describe which expectations
the described character has regarding the developed product, and which viewpoint or
access-level the described character will have on the product.

145

C. Appendix

“I make sure [Product] is up and running for the teams”
Name Cassie
Role Customer System Administrator
- Responsible to setup and configure [Product Name]:
deploy container (maybe), connects to identity management
- She sets up the tunneling between [Product Name],
other applications, and [Product Name]

Responsibilities
and Tasks

- It must be easy to connect [Product Name] to [Product Name]
- I want to use the same user database / LDAP as for

my [Product Name] and [Product Name] so that my developers
Expectations don’t have to create another user

- There are templates / How-To’s on how to

connect [Product Name] with [Product Name] Applications

¢ log into the [Product Name] with [...] credentials

* injtiate the provisioning of [Product Name] from Portal
Access & Rights | ¢ (or initiates deployment manually)

view [Product Name] instance on Portal

Status <Validation with customers, partners, other internal teams>

Table C.1.: An example Persona documentation from the case organization

Variants
The Persona documentation can be distributed in various ways: in the online wiki, physi-
cally on walls in the form of posters, or in other ways.

Consequences
Benefits:

¢ All stakeholders have a common vision of the end user Persona.
¢ The product can be designed targeted at the Persona.

Liabilities:
* The Persona might be subject to change.

Data Collection

The Personas are described, created, and maintained by the Product Owner in close col-
laboration with the customer of the product / project. This ensures accurate descriptions
of the final users.

146

C.4. Documentation of Bad Practices

C.4. Documentation of Bad Practices

C.4.1. Rantrospective

Pattern Overview

ID AP-1

Name RANTROSPECTIVE

Alias

Summary The standard sprint retrospective template is using 3 columns with

the questions “What I don’t like”, “What I like”, and “What should
stay”. These questions lead the team to rant and show their frus-
tration, rather than coming up with constructive points.

Context
The team has to reflect on what did not go well in the past sprint in order to improve in
the future.

Problem
C-39: How to establish a culture of continuous improvement?

Forces

* Retrospectives are necessary to find possibilities to improve the work.
* However, the setting of the Sprint Retrospective is tempting for people to rant on the
previous sprint and to only focus on negative things.

General Form

The retrospective is built around a template of three columns with one question each.
Every team member has to give an answer to all those three questions. The questions
are:

¢ “What I don’t like”
* “What I like”
¢ “What should stay”

Consequences
Liabilities:
¢ The negatively phrased question tempts team members to really rant on certain
things and show all of their frustration.
¢ The questions do not encourage team members to think of ways to improve on the
problems.

147

C. Appendix

Revised Solution
Phrase the questions more intelligently:

* “Things I would like to improve”
¢ “Things which went well”

This points the focus towards possible improvements rather than negative problems.

See Also

* The|V-4: SAILBOAT RETROSPECTIVE|is a way to run the retrospective more positively
minded.

C.4.2. Demo Driven Development

The anti-pattern candidate [AP-2: DEMO DRIVEN DEVELOPMENT| was already presented
in the findings in Section [4.4.9]

148

C.4. Documentation of Bad Practices

C.4.3. Don’t Use Agile as Magic Bullet

Pattern Overview

ID AP-3

Name DON'T USE AGILE AS MAGIC BULLET

Alias

Summary Agile methodologies are the go-to methodologies for new software

development projects nowadays. However, in some cases they are
not the best choice for the project and other methods should be
considered as well.

Example

At the case organization teams are free to choose which agile methodology to use for their
projects. However, SA2 mentioned that agile methodologies might not be the best way to
manage some of the organizations projects.

Context
Agile methods are the go-to methodology in software companies for new projects. Teams
usually get to choose their own methodology, but within the frame of agility.

Problem
C-6: How to deal with incorrect practices of agile development?
C-124: How to implement scaled agile methodologies?

Forces
¢ At the moment, besides agile often no other ways to run projects are considered by

many managers.
* Not every project is best managed with agile methods.

General Form

When a new project is set up, the management usually gives a frame on how the project
should be managed. At the case organization, the frame was that the methodology of
choice should be agile.

Consequences
Benefits:

¢ All new projects are using development methodologies from a defined (agile) scope.
Liabilities:

¢ There might be better, non-agile ways to manage a specific new project.

¢ Agile methods are not the best way to manage new projects if team members are not

149

C. Appendix

educated regarding agile values and practices.

Revised Solution

For some projects (e.g., when the scope and requirements are known and fixed up front)
traditional methodologies might be worth a try. Further, if agile methods are applied with-
out extensive coaching for values and practices, often projects might run smoother using
the acquainted methodologies.

150

C.4. Documentation of Bad Practices

C.4.4. Too High-Level Scrum of Scrums

Pattern Overview

ID AP-4

Name Too HIGH-LEVEL SCRUM OF SCRUMS

Alias

Summary In large multi-team setup it is hard to do informative Scrum of

Scrums meetings in a feasible time-span. Often the discussions are
too high-level to be relevant for developers.

Example

The teams of Product E are doing Scrum of Scrums meetings. However, interviewee D2
mentioned that those meetings are not relevant to his work because the discussions were
to high-level.

Context
Teams working together on a project have to communicate what they are working on and
coordinate their work.

Problem
C-83: How to deal with lacking knowledge of another team’s activities?

Forces

¢ The normal meetings of agile teams (e.g., the Scrum meetings) are too detailed for
people from other teams. They do not need that much detail.

¢ To make higher-level meetings (like Scrum of Scrums) more interesting for all partic-
ipants, people are tempted to make them more abstract and less in-depth.

General Form

The teams of a project setup a Scrum of Scrums meeting. In this meeting the teams or
representatives of teams discuss what their individual are currently doing and which im-
pediments they are facing. At the case organization, however, interviewees reported that
the Scrum of Scrums meeting was too high-level for technical stakeholders like develop-
ers. Thus, the Scrum of Scrums meeting does not fulfill its intention.

Other Standards

¢ Paasivaara et al. [56] also report that ‘general purpose” Scrum of Scrums meetings
are not interesting and relevant to all participants anymore.

151

C. Appendix

C.5. Documentation of Principle Candidates

C.5.1. Prerequisites to Form Autonomous Teams

Pattern Overview

ID P-1

Name PREREQUISITES TO FORM AUTONOMOUS TEAMS

Alias

Summary To build an autonomous and focused team, the three prerequisites

of this principle have to be fulfilled:

1. The team needs to trust the PO and should never bypass
her/him in stakeholder communication or decisions.

2. The team has to have a common understanding of why agile
methods are used within the team.

3. Measurable key performance indicators have to be defined
up front, to be able to constantly check if the team is working
towards the right direction.

Type Coordination
Binding Nature Mandatory

Example

The Team1 of the case organization was set up from scratch in 2018. Almost the entire
team was new hires at that time. The software architect SA1 described that they had to
implement this principle first to get started.

Context
A team or a project and its teams were just set up. The team members or most of the team
members have not worked in this exact setup previously.

Problem
C-16: How to establish self-organization?
C-75: How to form and manage autonomous teams?

Forces

* A new project is created by top-down strategy decisions, so the prerequisites have to
be implemented by the team members on their own after project setup.

¢ After the creation of a new team, people do not have s common understanding of
how communication and coordination can work for this team.

e Itis hard to determine progress of the team, especially in the beginning.

152

C.5. Documentation of Principle Candidates

Consequences
Benefits:

¢ The team is autonomous in the sense that the PO can effectively control the informa-
tion exchange between stakeholders and development team.

¢ The progress of the team can be clearly measured and improved.

* People are more engaged in improving the team’s agile practices if they understand
why they are applied.

Liabilities:

e It is often hard to define good, measurable key performance indicators. They are

very project and team specific.

153

C. Appendix

C.5.2. Spread Knowledge

Pattern Overview

ID P-2

Name SPREAD KNOWLEDGE

Alias

Summary To avoid division of knowledge within teams, the work topics

should be rotated among team members in such a way, that no sin-
gle person develops a component completely alone. This ensures
knowledge is spread across multiple people.

Type Knowledge Management
Binding Nature Recommended
Context

The team is working on multiple topics at the same time. All topics are important for the
progress of the project.

Problem
C-100: How to deal with division of knowledge within and between teams?

Forces

¢ Teams should be able to work independently / autonomously (to a certain extent).
However, the knowledge should not be only in one team or at one person.
¢ The team wants to progress as fast as possible but also avoid knowledge silos.

Variants

The rotation schedule can be varied. It should not be too long to avoid too much knowl-
edge centralization. This can also be applied using teams and components. The teams can
rotate the work on components of their project in a regular schedule.

Consequences
Benefits:

* Knowledge about components and solutions is spread across the team members.

* Reduces the danger of losing knowledge in case of personnel change or unexpected
events.

Liabilities:

e Reduces the passion of the teams and individual developers for their work. There is
no component “ownership” anymore.

* Reduces continuity in individual work. Requires familiarization with the topic on
every sprint beginning.

154

Bibliography

[10]

Christopher Alexander. A Pattern Language: Towns, Buildings, Construction. New York,
USA: Oxford university press, 1977.

Scott W. Ambler. More Process Patterns: Delivering Large-scale Systems Using Object
Technology. New York, USA: Cambridge University Press, 1999.

Scott W. Ambler. Process Patterns: Building Large-scale Systems Using Object Technology.
New York, USA: Cambridge University Press, 1998.

Kent Beck. “Embracing Change with Extreme Programming”. In: IEEE Computer
32.10 (1999), pp. 70-77.

Kent Beck, Mike Beedle, Arie van Bennekum, Alistair Cockburn, Ward Cunning-
ham, Martin Fowler, James Grenning, Jim Highsmith, Andrew Hunt, Ron Jeffries,
Jon Kern, Brian Marick, Robert C. Martin, Steve Mellor, Ken Schwaber, Jeff Suther-
land, and Dave Thomas. Manifesto for Agile Software Development. 2001. URL: https:
//agilemanifesto.org (visited on 05/21/2019).

Mike Beedle, James O. Coplien, Jeff Sutherland, Jens C. Ostergaard, Ademar Aguiar,
and Ken Schwaber. Essential Scrum Patterns. 2010. URL: https://www.hillside.net/
plop/2010/papers/beedle. pdf (visited on 06/13/2019).

Mike Beedle, Martine Devos, Yonat Sharon, Ken Schwaber, and Jeff Sutherland.
“SCRUM: A Pattern Language for Hyperproductive Software Development”. In:
Pattern languages of program design 4. Ed. by James O. Coplien, John M. Vlissides,
and Neil Harrison. Boston, USA: Addison-Wesley, 1999.

Izak Benbasat, David K. Goldstein, and Melissa Mead. “The Case Research Strategy
in Studies of Information Systems”. In: MIS Quarterly 11.3 (1987), pp. 369-386.

Saskia Bick, Alexander Scheerer, and Kai Spohrer. “Inter-Team Coordination in Large
Agile Software Development Settings: Five Ways of Practicing Agile at Scale”. In:
Proceedings of the Scientific Workshop Proceedings of XP2016. Edinburgh, UK: ACM,
2016, 4:1-4:5.

Saskia Bick, Alexander Scheerer, Kai Spohrer, Thomas Kude, and Armin Heinzl.
“Software Development in Multiteam Systems : A Longitude Study on the Effects of
Structural Incongruencies on Coordination Effectiveness”. In: eProceedings of the 9th
International Research Workshop on Information Technology Project Management. Auck-
land, NZ: AlSeL, 2014, pp. 49-56.

155

https://agilemanifesto.org
https://agilemanifesto.org
https://www.hillside.net/plop/2010/papers/beedle.pdf
https://www.hillside.net/plop/2010/papers/beedle.pdf

Bibliography

[11] Kurt Bittner. The Nexus framework for scaling scrum. Ed. by Patricia Kong and David
West. Boston, USA: Prentice-Hall, 2018.

[12] Barry W. Boehm. “A Spiral Model of Software Development and Enhancement”. In:
SIGSOFT Softwware Engineering Notes 11.4 (1986), pp. 14-24.

[13] Barry W. Boehm and Richard Turner. “Management challenges to implementing ag-
ile processes in traditional development organizations”. In: IEEE Software 22.5 (2005),
pp- 30-39.

[14] Teodora Bozheva and Maria E. Gallo. “Framework of Agile Patterns”. In: Software
Process Improvement. Ed. by Ita Richardson, Pekka Abrahamsson, and Richard Mess-
narz. Berlin, DE: Springer, 2005, pp. 4-15.

[15] Sabine Buckl, Florian Matthes, Alexander W. Schneider, and Christian M. Schweda.
“Pattern-Based Design Research — An Iterative Research Method Balancing Rigor
and Relevance”. In: 8th International Conference on Design Science Research in Informa-
tion Systems. Berlin, DE: Springer, 2013, pp. 73-87.

[16] Erran Carmel, Yael Dubinsky, and Alberto Espinosa. “Follow The Sun Software De-
velopment: New Perspectives, Conceptual Foundation, and Exploratory Field Study”.
In: 2009 42nd Hawaii International Conference on System Sciences. Waikoloa, USA: IEEE,
2009, pp. 1-9.

[17] Lawrence Chung and Julio C. S. do Prado Leite. “On Non-Functional Requirements
in Software Engineering”. In: Conceptual Modeling: Foundations and Applications. Berlin,
DE: Springer, 2009, pp. 363-379.

[18] Alistair Cockburn and Jim Highsmith. “Agile Software Development: The People
Factor”. In: IEEE Computer 34.11 (2001), pp. 131-133.

[19] James O. Coplien. “A Generative Development-process Pattern Language”. In: Pat-
tern Languages of Program Design. Ed. by James O. Coplien and Douglas C. Schmidt.
New York, USA: ACM Press/Addison-Wesley, 1995, pp. 183-237.

[20] James O. Coplien. Software patterns: Management briefs. Cambridge, UK: Cambridge
University Press, 1996.

[21] James O. Coplien and Neil B. Harrison. Organizational Patterns of Agile Software De-
velopment. Vol. 1. Upper Saddle River, USA: Prentice-Hall, 2004.

[22] Daniela S. Cruzes and Tore Dyba. “Recommended Steps for Thematic Synthesis in
Software Engineering”. In: 2011 International Symposium on Empirical Software Engi-
neering and Measurement. Banff, CA: IEEE, 2011, pp. 275-284.

[23] Kim Dikert, Maria Paasivaara, and Casper Lassenius. “Challenges and success fac-
tors for large-scale agile transformations: A systematic literature review”. In: Journal
of Systems and Software 119 (2016), pp. 87-108.

156

Bibliography

[24] Torgeir Dingseyr, Tor E. Feegri, and Juha Itkonen. “What Is Large in Large-Scale? A
Taxonomy of Scale for Agile Software Development”. In: International Conference on
Product-Focused Software Process Improvement. Cham, DE: Springer, 2014, pp. 273-276.

[25] Torgeir Dingseyr and Nils B. Moe. “Research Challenges in Large-scale Agile Soft-
ware Development”. In: SIGSOFT Software Engineering Notes 38.5 (2013), pp. 38-39.

[26] Torgeir Dingseoyr and Nils B. Moe. “Towards Principles of Large-Scale Agile Devel-
opment”. In: Agile Methods. Large-Scale Development, Refactoring, Testing, and Estima-
tion. Cham, DE: Springer, 2014, pp. 1-8.

[27] Torgeir Dingseyr, Nils B. Moe, Tor E. Feegri, and Eva A. Seim. “Exploring software
development at the very large-scale: a revelatory case study and research agenda for
agile method adaptation”. In: Empirical Software Engineering 23.1 (2018), pp. 490-520.

[28] Torgeir Dingseyr, Knut Rolland, Nils B. Moe, and Eva A. Seim. “Coordination in
multi-team programmes: An investigation of the group mode in large-scale agile
software development”. In: Procedia Computer Science 121 (2017), pp. 123-128.

[29] Tore Dyba and Torgeir Dingseyr. “What Do We Know about Agile Software Devel-
opment?” In: IEEE Software 26.5 (2009), pp. 6-9.

[30] Christof Ebert and Maria Paasivaara. “Scaling Agile”. In: IEEE Software 34.6 (2017),
pp. 98-103.

[31] Amr Elssamadisy. Agile Adoption Patterns: A Roadmap to Organizational Success. Addison-
Wesley Professional, 2008.

[32] Alberto Espinosa, Javier Lerch, Robert Kraut, Eduardo Salas, and Stephen Fiore. “Ex-
plicit vs. implicit coordination mechanisms and task dependencies: one size does not
fit all”. In: Team cognition: Understanding the factors that drive process and performance
(2004), pp. 107-129.

[33] Sallyann Freudenberg and Helen Sharp. “The Top 10 Burning Research Questions
from Practitioners”. In: IEEE Software 27.5 (2010), pp. 8-9.

[34] Durham Goode. Scaling Mercurial at Facebook. 2014. URL: https: //code . fb. com/
core-data/scaling-mercurial-at-facebook/ (visited on 07/26/2019).

[35] Nina-Mareike Harders. “Identifying recurring Challenges and Best Practices of Ag-
ile Coaches and Scrum Masters and Documenting them as a part of a Large-Scale Ag-
ile Development Pattern Language”. Master’s Thesis. Technical University of Mu-
nich, 2019.

[36] Neil B. Harrison. “Advanced Pattern Writing - Patterns for Experiences Pattern Au-
thors”. In: Pattern Languages of Program Design 5. Ed. by Dragos Manolescu, Markus
Voelter, and James Noble. Boston, USA: Addison-Wesley, 2006.

[37] Neil B. Harrison. “Organizational Patterns for Teams”. In: Pattern Languages of Pro-
gram Design 2. Ed. by John M. Vlissides, James O. Coplien, and Norman L. Kerth.
Boston, USA: Addison-Wesley, 1996, pp. 345-352.

157

https://code.fb.com/core-data/scaling-mercurial-at-facebook/
https://code.fb.com/core-data/scaling-mercurial-at-facebook/

Bibliography

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

Neil B. Harrison. “The language of shepherding”. In: Pattern languages of program
design 5. Ed. by Dragos Manolescu, Markus Voelter, and James Noble. 1999, pp. 507-
530.

Alan R. Hevner, Salvatore T. March, Jinsoo Park, and Sudha Ram. “Design Science
in Information Systems Research”. In: MIS Quarterly 28 (2004), pp. 75-105.

VersionOne Inc. 13th annual state of agile report. 2019. URL: https://www.stateofagile.
com / #ufh - i-521251909 - 13th - annual - state - of - agile - report/| (visited on
05/22/2019).

Ivar Jacobson, Grady Booch, and James Rumbaugh. “The unified process”. In: IEEE
Software 3 (1999), pp. 96-102.

Binnur Karabacak. “Survey and Analysis of Process Frameworks for an Agile IT
Organization”. Bachelor’s Thesis. Technical University of Munich, 2017.

Maryam Kausar and Adil Al-Yasiri. Distributed Agile Patterns. URL: http://stp872.
edu.csesalford.com/distributedagilepatterns.html|(visited on 06/17/2019).

Maryam Kausar and Adil Al-Yasiri. “Distributed agile patterns for offshore software
development”. In: 12th International Joint Conference on Computer Science and Software
Engineering (JCSSE). Songkhla, TH: IEEE, 2015.

Allan Kelly. Business patterns for software developers. Chichester, UK: John Wiley &
Sons, 2012.

Maarit Laanti. “Characteristics and Principles of Scaled Agile”. In: Agile Methods.
Large-Scale Development, Refactoring, Testing, and Estimation. Cham, DE: Springer, 2014,
pp- 9-20.

Phillip A. Laplante. Antipatterns. Identification, Refactoring and Management. Boca Ra-
ton, USA: Auerbach, 2006.

Craig Larman and Bas Vodde. Large-Scale scrum: More with LeSS. Addison-Wesley
Professional, 2016.

Christian Lescher. “Patterns for Global Development: How to Build One Global
Team?” In: Proceedings of the 15th European Conference on Pattern Languages of Pro-
grams. Irsee, DE: ACM, 2010, 6:1-6:6.

Thomas W. Malone and Kevin Crowston. “The Interdisciplinary Study of Coordina-
tion”. In: ACM Computing Surveys 26.1 (1994), pp. 87-119.

Gerard Meszaros and Jim Doble. “A Pattern Language for Pattern Writing”. In: Pat-
tern languages of program design 3. Ed. by Robert C. Martin, Dirk Riehle, and Frank
Buschmann. Boston, USA: Addison-Wesley, 1997, pp. 529-574.

Matthew B. Miles, A. Michael Huberman, and Johnny Saldafia. Qualitative Data Anal-
ysis. A Methods Sourcebook. 4. ed. Los Angeles, USA: SAGE Publications, 2019.

Ian Mitchell. Agile Development in Practice. London, UK: TamaRe House, 2016.

158

https://www.stateofagile.com/#ufh-i-521251909-13th-annual-state-of-agile-report/
https://www.stateofagile.com/#ufh-i-521251909-13th-annual-state-of-agile-report/
http://stp872.edu.csesalford.com/distributedagilepatterns.html
http://stp872.edu.csesalford.com/distributedagilepatterns.html

Bibliography

[54] Miguel J. Monasor, Aurora Vizcaino, Mario Piattini, John Noll, and Sarah Beecham.
“Towards a Global Software Development Community Web: Identifying Patterns
and Scenarios”. In: 2013 IEEE 8th International Conference on Global Software Engineer-
ing Workshops. Bari, IT: IEEE, 2013, pp. 41-46.

[55] Helga Nyrud and Viktoria Stray. “Inter-team Coordination Mechanisms in Large-
scale Agile”. In: Proceedings of the XP2017 Scientific Workshops. Cologne, DE: ACM,
2017, 16:1-16:6.

[56] Maria Paasivaara, Casper Lassenius, and Ville T. Heikkild. “Inter-team Coordination
in Large-scale Globally Distributed Scrum: Do Scrum-of-scrums Really Work?” In:
Proceedings of the ACM-IEEE International Symposium on Empirical Software Engineer-
ing and Measurement. Lund, SE: ACM, 2012, pp. 235-238.

[57] Rachel Potvin and Josh Levenberg. “Why Google Stores Billions of Lines of Code in
a Single Repository”. In: Communications of the ACM 59.7 (2016), pp. 78-87.

[58] Winston W. Royce. “Managing the Development of Large Software Systems: Con-
cepts and Techniques”. In: Proceedings of the 9th International Conference on Software
Engineering. Monterey, California, USA: IEEE, 1987, pp. 328-338.

[59] Kenneth S. Rubin. Essential Scrum: A Practical Guide to the Most Popular Agile Process.
Upper Saddle River, USA: Addison-Wesley, 2013.

[60] Per Runeson and Martin Host. “Guidelines for conducting and reporting case study
research in software engineering”. In: Empirical Software Engineering 14.2 (2009), pp. 131-
164.

[61] Nayan B. Ruparelia. “Software development lifecycle models”. In: ACM SIGSOFT
Software Engineering Notes 35.3 (2010), pp. 8-13.

[62] Alexander Scheerer. Coordination in Large-Scale Agile Software Development. Integrating
Conditions and Configurations in Multiteam Systems. Springer, 2017.

[63] Alexander Scheerer, Tobias Hildenbrand, and Thomas Kude. “Coordination in Large-
Scale Agile Software Development: A Multiteam Systems Perspective”. In: 2014 47th
Hawaii International Conference on System Sciences. Waikoloa, USA: IEEE, 2014, pp. 4780—
4788.

[64] Douglas C. Schmidt, Michael Stal, Hans Rohnert, and Frank Buschmann. Pattern-
Oriented Software Architecture Volume 2: Patterns for Concurrent and Networked Objects.
Chichester, UK: John Wiley & Sons, 2000.

[65] Ken Schwaber. “Scrum development process”. In: Proceedings of the 10th Annual ACM
Conference on Object Oriented Programming Systems, Languages, and Applications. 1995,
pp. 117-134.

[66] Ken Schwaber. The Nexus Guide. 2018. URL: https://www. scrum. org/resources/
nexus-guide (visited on 06/08/2019).

159

https://www.scrum.org/resources/nexus-guide
https://www.scrum.org/resources/nexus-guide

Bibliography

[67] Ken Schwaber and Jeff Sutherland. The Scrum Guide. 2017. URL: https : / / www .
scrumguides . org /docs/ scrumguide /v2017 /2017 - Scrum- Guide - US . pdf| (visited
on 06/04/2019).

[68] Scrum.org. The Scrum Framework Poster.2019. URL: https://www.scrum.org/resources/
scrum-framework-poster (visited on 07/25/2019).

[69] ScrumPLoP. Published Patterns. 2019. URL: https://sites.google.com/a/scrumplop.
org/published-patterns/home (visited on 08/08/2019).

[70] Jeff Sutherland, Neil Harrison, and Joel Riddle. “Teams That Finish Early Accelerate
Faster: A Pattern Language for High Performing Scrum Teams”. In: 2014 47th Hawaii
International Conference on System Sciences. Waikoloa, USA, 2014, pp. 4722-4728.

[71] Paul Taylor. “Capable, Productive, and Satisfied: Some Organizational Patterns for
Protecting Productive People”. In: Pattern languages of program design 4. Ed. by James
O. Coplien, John M. Vlissides, and Neil Harrison. Boston, USA: Addison-Wesley,
1999.

[72] Isabelle Therrien and Erik LeBel. “From Anarchy to Sustainable Development: Scrum
in Less than Ideal Conditions”. In: 2009 Agile Conference. Chicago, USA: IEEE, 2009,
pp. 289-294.

[73] James D. Thompson. Organizations in action. New York, USA: McGraw-Hill, 1967.

[74] Omer Uludag, Nina-Mareike Harders, and Florian Matthes. Documenting Recurring
Concerns and Patterns in Large-Scale Agile Development. 2019.

[75] Omer Uludag, Martin Kleehaus, Christoph Caprano, and Florian Matthes. “Iden-
tifying and Structuring Challenges in Large-Scale Agile Development Based on a
Structured Literature Review”. In: 2018 IEEE 22nd International Enterprise Distributed
Object Computing Conference. Stockholm, SE: IEEE, 2018, pp. 191-197.

[76] Antti Vélimaki. Pattern Language for Project Management in Global Software Develop-
ment. PhD Thesis. Tampere University of Technology, 2011.

[77] Andrew H. Van de Ven, Andre L. Delbecq, and Richard Koenig. “Determinants of
Coordination Modes within Organizations”. In: American Sociological Review 41.2
(1976), pp. 322-338.

[78] Tim Wellhausen and Andreas Fiesser. “How to Write a Pattern? A Rough Guide for
First-time Pattern Authors”. In: Proceedings of the 16th European Conference on Pattern
Languages of Programs. Irsee, DE: ACM, 2012, 5:1-5:9.

[79] Laurie Williams and Alistair Cockburn. “Agile software development: It's about
feedback and change”. In: IEEE Computer 36.6 (2003), pp. 39—-43.

[80] Robert K. Yin. Case study research: Design and Methods. 5th ed. Los Angeles, USA:
SAGE Publications, 2014.

160

https://www.scrumguides.org/docs/scrumguide/v2017/2017-Scrum-Guide-US.pdf
https://www.scrumguides.org/docs/scrumguide/v2017/2017-Scrum-Guide-US.pdf
https://www.scrum.org/resources/scrum-framework-poster
https://www.scrum.org/resources/scrum-framework-poster
https://sites.google.com/a/scrumplop.org/published-patterns/home
https://sites.google.com/a/scrumplop.org/published-patterns/home

	Abstract
	Outline of the Thesis
	Introduction
	Motivation
	Research Objectives
	Approach

	Foundations
	Patterns
	Definitions
	Writing Patterns

	Agile Software Development
	Definitions and Values
	Distinction from other Methodologies
	Scrum

	Large-Scale Agile Development
	Definition
	Concerns
	Large-Scale Agile Development Pattern Language
	The Nexus Framework

	Coordination Theory

	Related Work
	Related Work on Large-Scale Agile Development
	Related Work on Coordination
	Related Work on Pattern Languages

	Identifying Recurring Concerns and Practices
	Methodology
	Case Description
	Findings on Recurring Concerns
	Findings on Good and Bad Practices
	Follow the Sun
	Background on Follow the Sun Practice
	Sprint Zero
	Background on Sprint Zero Practice
	Representative Exchange
	Background on Representative Exchange Practice
	Team Homepage
	Background on Team Homepage Practice
	Demo Driven Development
	Background on Demo Driven Development

	Coordination Mode Analysis of Identified Practices

	Discussion
	Key Findings
	Limitations

	Conclusion
	Summary
	Outlook

	Appendix
	Interview Questionnaire on Identifying Concerns and Good Practices

	Appendix
	Documentation of Concerns
	Occurrences of Duplicate Concerns

	Appendix
	Documentation of Good Coordination Practices
	Joint Daily Scrum Meeting
	Refinement Meeting
	DevCorner
	Integration Coordination Group
	Project Debriefing
	Representative Exchange
	Project Status Protocol
	Area Retrospective
	Bug Triage Meeting
	Cross Team Peer Review
	Distributed Component Leads
	Milestone Planning
	Coffee Corner Meeting
	Lunch Talk
	Further Coordination Pattern Candidates

	Documentation of Good Methodology Practices
	Mono-Repo
	Mixed Sprint
	Assigning Rights
	Follow the Sun
	ShipCaptain
	Sprint Zero
	Dedicated Person to Deal with Annoyments
	Requirement Separation
	Further Methodology Pattern Candidates

	Documentation of Good Viewpoint Practices
	Roadmap
	Task Dependency Mapping
	Milestone Planning Board
	Sailboat Retrospective
	Team Homepage
	Persona

	Documentation of Bad Practices
	Rantrospective
	Demo Driven Development
	Don't Use Agile as Magic Bullet
	Too High-Level Scrum of Scrums

	Documentation of Principle Candidates
	Prerequisites to Form Autonomous Teams
	Spread Knowledge

	Bibliography

